Адаптивные технологии в промышленности. Аддитивное производство (АП)Additive Manufacturing (AM). Аддитивные технологии в образовании

Распечатать

Детали & Материалы

Аддитивные технологии в российской промышленности

AF-технологии – эффективное звено современного производства

Аддитивные технологии (AF – Additive Manufacturing), или технологии послойного синтеза, сегодня одно из наиболее динамично развивающихся направлений "цифрового" производства. Они позволяют на порядок ускорить НИОКР и решение задач подготовки производства, а в ряде случаев уже активно применяются и для производства готовой продукции .

В недалеком прошлом, лет 10–15 назад, аддитивные технологии использовались преимущественно в традиционно технологически продвинутых отраслях – автомобильной, авиационной и аэрокосмической промышленностях, а также в приборостроении и медицине, где тандем "время – деньги" всегда имел особое значение.

В эпоху инновационной экономики время, затраченное на производство товара, является важнейшим фактором успеха или неуспеха бизнеса. Даже качественно произведенный товар может оказаться невостребованным, если рынок к моменту выхода новой продукции уже насыщен подобными товарами компаний-конкурентов. Поэтому все больше направлений промышленности активно осваивают AF-технологии. Все чаще их используют научно-исследовательские организации, архитектурные и конструкторские бюро, дизайн-студии и просто частные лица для творчества или в качестве хобби. Во многих колледжах и университетах аддитивные машины, или, как их часто называют, 3D-принтеры являются неотъемлемой частью учебного процесса для профессионального обучения инженерным специальностям.

Существует множество технологий, которые можно назвать аддитивными , объединяет их одно: построение модели происходит путем добавления материала (от англ. аdd – "добавлять") в отличие от традиционных технологий, где создание детали происходит путем удаления "лишнего" материала.

Классической и наиболее точной технологией является SLA-технология (от Stereolithography Apparatus), или стереолитография, – послойное отверждение жидкого фотополимера лазером.

Существует много видов фотополимерных композиций, поэтому спектр применения прототипов, полученных по SLA-технологии, очень широк: макеты и масштабные модели для аэро- и гидродинамических испытаний, литейные и мастер-модели, дизайн-модели и прототипы, функциональные модели и т. д.

Селективное лазерное спекание – SLS-технология (Selective Laser Sintering), SelectiveLaserMelting) – еще одно важное направление аддитивных технологий.

Здесь строительным (модельным) материалом являются сыпучие, порошкообразные материалы, а лазер является не источником света, как в SLA-машинах, а источником тепла, посредством которого производится сплавление частичек порошка. В качестве модельных материалов используется большое количество как полимерных, так и металлических порошков.

Порошкообразный полиамид применяется в основном для функционального моделирования, макетирования и изготовления контрольных сборок. Полистирол используется для изготовления литейных выжигаемых моделей.

Отдельным направлением является послойное лазерное спекание (сплавление) металлопорошковых композиций. Развитие этого направления AF-технологий стимулировало и развитие технологий получения порошков металлов. На сегодняшний день номенклатура металлических композиций имеет широкий спектр материалов на основе Ni и Co (CoCrMO, Inconel, NiCrMo), на основе Fe (инструментальные стали: 18Ni300, H13; нержавеющая сталь: 316L), на основе Ti (Ti6-4, CpTigr1), на основе Al (AlSi10Mg, AlSi12). Производятся порошки бронз, специальных сплавов, а также драгметаллов – главным образом для нужд дентальной медицины.

Из металлических порошков "выращивают" заготовки пресс-форм, специальные инструменты, оригинальные детали сложной конфигурации, которые затруднительно или невозможно получить литьем или механообработкой, импланты и эндопротезы и многое другое. Уже сейчас при штучном и мелкосерийном производстве зачастую становится экономически выгодным "вырастить" небольшую партию деталей на SLS-машине, чем изготавливать литейную или штамповую оснастку. В сочетании с HIP (Hot Isostatic Pressing – горячее изостатическое прессование) и соответствующей термообработкой такие детали не только не уступают литым или кованым изделиям, но и превосходят их по прочности на 20–30%.

Очень широкие перспективы открываются для еще одной аддитивной технологии – технологии "струйной печати" – InkJet- или PolyJet-технологии. Эта технология предполагает нанесение модельного материала или связующего состава с помощью струйных головок. Особый интерес InkJet-технологии представляют для литейного дела.

Они позволяют "выращивать" непосредственно литейные формы, т. е. "негатив" детали, и исключить стадии изготовления формовочной оснастки – мастер-модели и литейной модели. Компания ExOne (и ее дочернее предприятие ProMetal GmbH) выпускает машины типа S-Max, которые позиционируются не как "прототипирующие машины", а как вполне "рядовое" технологическое индустриальное оборудование, устанавливаемое в общей технологической цепи производства не только опытной, но и серийной продукции. Практически все автомобильные компании мира обзавелись такими машинами. Оно и понятно – с их помощью стало возможным не в разы, а на порядок сократить время прохождения НИОКР по критически важным для автостроителей позициям – литейным деталям: блоки и головки цилиндров двигателей, мосты и коробки передач, деталям, на изготовление которых в традиционном опытном производстве тратились месяцы, а с учетом экспериментальной доводки и подготовки производства – многие месяцы. Теперь конструктор может увидеть свой новый двигатель на испытательном стенде не через полгода, а через две недели после завершения технического проекта.

Сегодня в России существует множество компаний, оказывающих услуги по прототипированию, однако в основном это небольшие предприятия, обладающие одним-двумя недорогими 3D-принтерами, способными выращивать несложные детали. Связано это с тем, что высокотехнологичное оборудование, способное обеспечить высокое качество изделий, стоит дорого и требует для работы и обслуживания квалифицированного, специально обученного персонала. Далеко не каждая компания может себе это позволить, ведь для покупки необходимо четко понимать, каким образом и насколько эффективно это оборудование будет использоваться, будет ли оно загружено работой. Слабостью таких компаний является отсутствие комплексности решения задач. В лучшем случае дело ограничивается оказанием достаточно простой услуги – изготовлением прототипа или модели тем или иным способом. Тогда как AF-технологии – это не только и не столько 3D-принтер, но важная часть 3D-среды, в которой происходит рождение нового продукта – от замысла конструктора до материализации его идей в серийном производстве. Среда, в которой новый продукт создается, "живет", эксплуатируется, ремонтируется вплоть до завершения "жизненного цикла" этого продукта.

Поэтому для полноценного использования AF-технологий нужно создать эту среду: освоить 3D-проектирование и моделирование, CAE- и САМ-технологии, технологии оцифровки и реинжениринга, сопутствующие технологии, включая и вполне традиционные, но переформатированные под 3D-среду. Причем освоить не в отдельно взятом университете или крупной заводе – такие есть промышленностью в целом на всех уровнях – этого нет даже в отдельно взятой, например, авиационной или автомобильной промышленности. Тогда и AF-технологии будут выглядеть не экзотическими изысками, а вполне естественным и эффективным звеном общей 3D-среды создания, производства и жизненного цикла изделия.

Существуют на рынке и крупные компании, обладающие оборудованием высокого уровня, которые, как правило, решают достаточно сложные производственные задачи и оказывают более широкий спектр полезных услуг, сопутствующих прототипированию, способных от начала до конца провести НИОКР и проконтролировать качество работ на каждом этапе. К таким предприятиям можно отнести ФГУП "НАМИ", АБ "Универсал", НПО "Салют", ОАО "НИАТ" (Москва), УМПО (Уфа), НИИ "Машиностроительные Технологии", (СПбГПУ), ОАО "Тушинский машиностроительный завод" и ряд других. Однако такой комплексный подход по силам далеко не каждому предприятию, особенно в условиях безучастной позиции со стороны государства.

В целом ситуация с внедрением AF-технологий в российскую промышленность остается крайне неблагополучной. Ученые, инженеры и технологи не нашли нужных слов, чтобы привлечь внимание государства к опасному отставанию в абсолютно необходимой для отечественной промышленности инновационной сфере. Не нашли аргументов, чтобы убедить власти в необходимости разработки национальной программы развития аддитивных технологий , создания отечественной индустрии AF-машин. Россия практически не участвует в международных организациях, оказывающих значительное влияние на развитие AF-технологий в мире.

Ключевыми проблемами при внедрении AF-технологий в первую очередь являются кадры, которые, как известно, решают все; собственно 3D-машины, высококлассное AF-оборудование, которое невозможно приобрести и невозможно создать без целевой поддержки со стороны правительства в той или иной форме (что, кстати, и делается за рубежом в подавляющем большинстве случаев); материалы – отдельная и сложная проблема междисциплинарного характера, решение которой опять-таки целиком и полностью зависит от качества управления процессом со стороны государства. Это неподъемные для отдельной отрасли задачи. Это проблема, которая может быть решена только при условии целенаправленного взаимодействия высшей школы, академической и отраслевой науки.

Прекрасным примером "рыночного вмешательства" государства в решение сложных технологических задач является литейный завод ACTech, построенный во Фрайбурге (недалеко от Дрездена) в конце 90-х годов в период ренессанса Восточных территорий. Завод совсем небольшой по нашим меркам – всего 6500 кв. метров общей площади, построен с иголочки, в чистом поле и был оснащен самым передовым технологическим оборудованием, главной фишкой которого были AF-машины для выращивания песчаных форм (от компании EOS, Мюнхен). Это был, пожалуй, первый пример комплексного подхода – завод был оснащен современным оборудованием для реальной работы в 3D-среде: AF-машины, измерительная техника, ЧПУ-станки, плавильное, литейное и термическое оборудование. В настоящее время там работают около 230 чел., 80% которых – ИТР и менеджмент. Теперь это один из самых известных заводов с мировым именем, клиентами которого являются практически все ведущие автомобильные компании Германии, многие европейские и американские авиационные фирмы. На завод достаточно передать 3D-файл будущего изделия и описать задачу: материал, количество, желательные сроки изготовления и что вы хотите получить – отливку или полностью обработанную деталь, от этого зависят сроки выполнения заказа – от 7 дней до 8 недель. Примечательно, что около 20% заказов – это единичные детали, около 40% составляют заказы на 2–5 деталей. Почти половина отливок – чугун; примерно треть – алюминий; остальное – сталь и другие сплавы. Специалисты завода активно сотрудничают с фирмами – изготовителями AF-оборудования, ведут совместные НИР с университетами, завод является и успешным коммерческим предприятием, и полигоном для отработки новых технологических процессов.

Жизненный цикл нового изделия.
Работа проведена для ЗАО НПО "Турботехника"

Рынок аддитивных технологий в России развивается, но происходит это очень медленно, поскольку, чтобы вывести эти технологии на должный уровень, необходима поддержка государства. При должном внимании к внедрению AF-технологий они могут значительно повысить скорость реагирования на потребности рынка и экономическую эффективность многих отраслей промышленности.

Кирилл Казмирчук, заместитель директора НИИ "Машиностроительные технологии", СПбГПУ
Вячеслав Довбыш, заведующий лабораторией вакуумного литья металлов и полимеров НИИ "НАМИ"

Фотографии и материалы предоставлены авторами

Как известно, существует несколько методов 3D печати, однако все они являются производными аддитивной технологии производства изделий. Вне зависимости от того, какой 3D принтер вы используете, построение заготовки осуществляется путем послойного добавления сырья. Несмотря на то, что термин Additive Manufacturing используется отечественными инженерами очень редко, технологии послойного синтеза фактически оккупировали современную промышленность.

Экскурс в прошлое Additive Manufacturing

Цифровое производство нашло свое применение в медицине, космонавтике, производстве готовой продукции и прототипировании. Хотя 3D печать принято считать одним из главных открытий двадцать первого века, в действительности аддитивные технологии появились на несколько десятилетий раньше.

Родоначальником отрасли стал Чарльз Халл, основатель компании 3D Systems. В 1986 году инженер собрал первый в мире стереолитографический 3D-принтер, благодаря чему цифровые технологии сделали огромный рывок вперед. Приблизительно в то же время Скотт Крамп, позже основавший компанию Stratasys, выпустил первый в мире FDМ-аппарат. С тех пор, рынок трехмерной печати стал стремительно расти и пополняться новыми моделями уникального печатного оборудования.

Первое время обе технологии SLA и FDM развивались бок обок исключительно в направлении промышленного производства, однако в 1995 году назрел перелом, сделавший аддитивные методы изготовления продукции общедоступными. Студенты Массачусетского технологического института, Джим Бредт и Тим Андерсон, внедрили технологию послойного синтеза материала в корпус обычного настольного принтера. Именно так была основана компания Z Corporation, долгое время считавшаяся лидером в сфере бытовой печати объемных фигур.

Технология аддитивного производства — Эпоха инноваций

В наши дни AF-технологии используются повсеместно: научно-исследовательские организации с их помощью создают уникальные материалы и ткани, промышленные гиганты используют 3D принтеры для ускорения прототипирования новой продукции, архитектурные и конструкторские бюро нашли в 3D печати нескончаемый строительный потенциал, в то время как дизайн-студии буквально вдохнули новую жизнь в дизайнерский бизнес благодаря аддитивным машинам.

Наиболее точной аддитивной технологией считается стереолитография – методом поэтапного послойного отверждения жидкого фотополимера лазером. SLA принтеры используются преимущественно для изготовления прототипов, макетов и дизайнерских компонентов повышенной точности с высоким уровнем детализации.

Селективное лазерное спекание изначально появилось, как усовершенствованный метод отверждения жидкого фотополимера. SLS-технология позволяет в качестве чернил использовать порошкообразные материалы. Современные SLS-принтеры способны работать с керамической глиной, металлическим порошком, цементом и сложными полимерами.

В литейной отрасли недавно появились PolyJet-аппараты, работающие по классической AF-технологии. Они оборудованы струйными печатными головками, заправленными быстро-застывающим материалом. На сегодняшний день InkJet 3D принтеры нешироко распространены, однако не исключено, что уже через несколько лет трехмерная струйная печать станет столь же распространена, как и классические печатные устройства. Первопроходцем в данной отрасли стала компания ExOne с ее прототипирующей машиной S-Max.

Самыми дешевыми по-прежнему остаются FDM-принтеры – устройства, создающие трехмерные объекты путем послойного наплавления филамента. Наиболее распространенными принтерами данного типа остаются аппараты, печатающие расплавленной пластиковой нитью. Они могут оснащаться одной или несколькими печатными головками, внутри которых находится нагревательный элемент.

Большинство аддитивных принтеров, печатающих пластиком, способны создавать только одноцветные фигуры, однако в последнее время на рынке трехмерной печати появились машины, использующие одновременно несколько видов филамента. Данное новшество позволяет создать цветные объекты.

Перспективы AF-технологии

На данный момент рынок трехмерной печати далек от перенасыщения. Аналитики отрасли сходятся во мнении, что аддитивные технологии ждет радужное будущее. Уже сегодня научно-исследовательские центры, занижающиеся AF-разработками, получают огромные финансовые вливания от оборонного комплекса и медицинских государственных институтов, что не дает усомниться в точности экспертных прогнозов!

Аддитивная технология - сравнительно молодое, но очень популярное явление. Название этой технологии происходит от англоязычного термина Additive Manufacturing, что в буквальном переводе означает “производство через добавление”. Аддитивная технология означает метод изготовления путем послойного наращивания сырья.

Самый известный пример применения аддитивных технологий - популярные 3D-принтеры. Все виды данных устройств работают по технологии послойного синтеза.

Аддитивные технологии производства совершили революционный прорыв во многих отраслях - медицинской, строительной, конструкторской, машиностроительной, дизайнерской.

Экскурс в историю

Технологии 3D-печати считают главным открытием XXI века, но история этих инновационных устройств началась еще в XX веке. Изобретателем технологии и основателем новой отрасли стал инженер Чарльз Халл, основатель и владелец компании 3D-Systems.

В 1986 году Чарльз собрал первый в истории стереолитографический 3D-принтер. Примерно в тот же период другой инженер - Скотт Трамп - создал первый в своем классе FDM-аппарат. Два этих знаковых изобретения положили начало стремительного развития рынка трехмерной печати.

Новый этап развития

Следующим шагом в эволюции 3D-печати стало внедрение технологии послойного синтеза в корпус обычного настольного 3D-принтера, которое осуществили студенты Массачусетского технологического университета Тим Андерсон и Джимми Бредт. Впоследствии ими была основана компания Z Corporation, долгое время остававшаяся лидером отрасли.

Современные аддитивные технологии

Сейчас аддитивные технологии переживают период мощнейшего развития и повсеместной популяризации.

Исторически самая первая и точная аддитивная технология - стереолитография. Это метод поэтапного отверждения полимера при помощи лазера. Данную технологию применяют в прототипировании, при изготовлении макетов и элементов дизайна с высоким уровнем детализации.

Селективное лазерное спекание - инновационный метод отверждения жидкого фотополимера. Данная технология позволяет работать с цементом, керамической глиной, сложными полимерами, металлическим порошком.

Наиболее востребованными в бытовом смысле остаются FDM-принтеры, воссоздающие объекты путем наслоения пластиковой нити. Ранее принтеры были способны создавать объекты в одном цветовом решении, но сейчас на рынке появились устройства, использующие несколько видов цветных пластиковых нитей.

Центр аддитивных технологий

На российском рынке существует молодая компания, которая специализируется на применении аддитивных технологий. ОАО «Центр аддитивных технологий» работает на стыке компетенций дизайна, проектирования и расчетов, оптимизации технических решений и производства.

Компания располагает большим парком 3D-принтеров промышленного масштаба ведущих мировых производителей: MK Technology GmbH, EOS GmbH, 3D Systems, Stratasys, Envisiontec.

Основное направление работы центра - сотрудничество с предприятиями с целью разработки и реализации новой продукции и уникальных технологий. Также центр специализируется на разработке и производстве настольных портативных 3D-принтеров и сканеров. Данные 3D-устройства способны воплотить технологии прототипирования в бытовых условиях и идеально подходят для первого знакомства с аддитивными технологиями и основами 3D-печати.

Аддитивные технологии в машиностроении

Аддитивные технологии активно применяются в автомобильной отрасли. Команда американского инженера Джима Корра, основателя Kor Ecologic, более 15 лет работает над проектом Urbee - первым прототипом 3D-автомобиля. Следует сказать, что на принтере напечатан лишь кузов и некоторые детали - каркас авто металлический.

Данный автомобиль развивает небольшую максимальную скорость в 112 километров, но обладает низким лобовым сопротивлением благодаря дизайну корпуса и способен проезжать на электродвигателе порядка 65 километров.

Аддитивная технология используется и в прототипе американской компании Local Motors, которая готовит к массовому производству свои электрокары. Прототипы компании обладают современным дизайным, большим запасом хода и искусственным интеллектом.

Аддитивные технологии: применение

В современно мире аддитивные технологии применяются во многих отраслях и потенциально могут использоваться в каждой. Мировые таблоиды периодически потрясают новости о том, как на 3D-принтере напечатали оружие, человеческий орган, одежду, дом, автомобиль.

Потенциал развития данных технологий действительно высок и способен на порядок ускорить развитие научного-технического прогресса - научные лаборатории при помощи 3D-принтеров создают инновационные материалы и ткани. Применение аддитивных технологий в промышленности позволяет производителям ускорить прототипирование новых образцов и сократить путь от идеи до реализации. Архитектурная и строительная отрасли пытаются использовать потенциал аддитивных технологий на 100 %. Дизайнерский бизнес переживает новый этап развития благодаря аддитивному оборудованию.

Перспективы развития отрасли крайне благоприятны. Финансовые аналитики предсказывают рынку 3D-печати стремительный рост. Научно-исследовательские центры, которые занимаются аддитивными разработками, финансируются оборонным комплексом и медицинскими государственными институтами

Среди технологий, постоянно появляющихся в жизни человека благодаря достижениям научного прогресса, существуют и такие, которые носят название «аддитивных». Это определение произошло от заимствованного слова «аддитивность», или, если быть точнее, от английского словосочетания «additive manufacturing» (сокращенно – AF), которое дословно переводится как «прибавляемое производство». Так что же это такое, и чем данный вид технологий может быть полезен обществу сегодня?

Сущность

Аддитивные технологии являются отраслью цифровой промышленности и представляют собой такой метод производства изделий и различных продуктов, при котором происходит наращение слоев объекта посредством использования компьютерных устройств для 3D-печати. Что же за материалы их заполняют? Обычно это воск, металлические и гипсовые порошки, полистирол (бесцветный и стеклообразный полимер, напоминающих пластик), полиамиды (пластмассы), жидкие фотополимеры (заготовки, затвердевающие под воздействием световых лучей, чаще всего ультрафиолетовых) и пр.

Возникновение: как это было

История аддитивных устройств началась в 1986 году, когда один из представителей компании «Ultraviolet Products» по имени Чарльз Халл (ныне исполнительный вице-президент и главный технический директор собственной организации «3D Systems») сконструировал первый в мире стереолитографический принтер для трехмерной печати. Механизм был произведен главным образом для обеспечения оборонного комплекса США своевременными поставками. Халл обратил внимание на то, что для создания отдельных деталей и их последующей сборки требуется большое количество времени и сил. Поэтому он решил не только прибегнуть к помощи ультрафиолетового излучения, но и осуществить задуманное максимально рационально. Так, мужчина сначала наложил друг на друга несколько тысяч слоев пластика, а уже потом закрепил их одной ультрафиолетовой обработкой.

Позднее Чарльз покинул обанкротившуюся фирму «UVP», но останавливаться на разработке собственного детища не пожелал, – он запатентовал техническое изобретение в 1983 году и лично основал компанию, которая затем разрослась до масштабов настоящей корпорации. Сегодня «3D Systems» является одним из ключевых участников рынка принтеров, изделий и программного софта для создания объемной продукции.

Последующее развитие аддитивные технологии получили благодаря товарищам-студентам из Массачусетского технологического института. В 1993 году Джим Бредт и Тим Андерсон решили качественно дополнить уже существующие наработки собственными идеями, а потому взяли и модифицировали обычный 2D принтер в устройство для 3D печати. В модернизированном устройстве применялись не листы бумаги, а похожий на клей специальный жидкий состав, который разбрызгивался по тонким слоям основного наполнителя (полимерного, металлического или гипсового порошка) и затвердевал. Бредт и Андерсон подарили AF мировую известность, ведь сделали их более ходовыми и универсальными. В 1995 году друзья организовали собственную организацию «Z Corporation», успехи которой не остались без внимания «3D Systems», – в 2012 году она приобрела более мелкую, но не менее перспективную компанию, и их передовые проекты начали выходить в свет под общим логотипом.

Назначение и применение

Все это означало только одно – вступление в новую эру, качественное изменение многих производственных сфер и упрощение организационных процессов! Например, в автомобильной промышленности значительно ускорился этап разработки прототипов, ведь почти все комплектующие, будь то мощные двигатели или обыкновенные кнопки и рычаги, начали создаваться с полным или частичным использованием технологии 3D печати.

Кроме того, компании стали существенно экономить, ведь теперь производство:

  • больше не требовало наличия такого разнообразного инструментария, как прежде;
  • могло осуществляться при контроле меньшего количества сотрудников. По сути, для правильного создания детали оказывается достаточного 1-2 инженеров. Главное, что от них требуется – это полные и всесторонние знания проектирования и дизайна технических конструкций, а также понимание особенностей работы с AF установками.

Активно применяются подобные принтеры и… в медицине! Это может показаться невозможным, но даже на современном этапе трехмерные изделия используются как заменяющие и реконструирующие элементы, например, когда речь идет о челюстно-лицевой хирургии. В марте 2018 года в Манчестере была открыта клиника, специализирующаяся на выпуске стержней, протезов и пластин на 3D принтерах, которые заполняются пластмассовыми или металлическими смесями. Несмотря на то, что одна только установка модели «PolyJet» обошлась больнице в $42000, согласно подсчетам руководства, вложение в собственную лабораторию объемной печати окупится быстрее, чем постоянное обращение к посредникам. Сотрудники клиники прогнозируют, что уже через 5 лет подобные центры станут обязательными при лечебных и реабилитационных заведениях, особенно если они занимаются онкологическими, ортопедическими, неврологическими и ревматологическими заболеваниями.

Интересный факт! AF используются и для изготовления искусственных конечностей.

Пробная программа, начатая в 2017 году в столице Иордании, не только продолжает набирать обороты, но и демонстрирует положительные результаты. В Аммане осуществляется лечение людей, бежавших от военных действий в Сирии, Йемене и Ираке. Так, уже 5 добровольцев обзавелись «напечатанными» протезами, которые, во-первых, обошлись им намного дешевле обычных (порядка $20 против сотен долларов), и, во-вторых, были произведены с учетом индивидуальных особенностей и параметров тела.

Аддитивные технологии покоряют и другие сферы: это архитектура, авиастроительство, производство спортивного снаряжения и товаров для детей… Спектр их применения расширяется, а эксперты в один голос прочат этому направлению перспективное и радужное будущее с притоком инвестиций, возрастанием спроса на компетентную рабочую силу и повышением зарплат.

Подробнее о некоторых типах АТ

Не лишним будет упомянуть и о том, как происходит создание объемного продукта в каждом конкретном случае. Самыми популярными методами в аддитивном производстве являются:

  1. Fused deposition modeling, FDM – моделирование методом послойного наплавления. Объект конструируется согласно заложенной в программное обеспечение математической цифровой модели из специальной пластиковой нити (лески), которая расплавляется до определенной температуры, а потому становится достаточно гибкой для приобретения нужной формы. Вспомогательные конструкции удаляются вручную или благодаря растворению в специальной жидкости, а готовое изделие либо оставляется в напечатанном виде, либо подвергается пост-обработке (покраска, полировка, шлифовка, склеивание и пр.). Произведенные детали всегда отличаются хорошими характеристиками, такими как износоустойчивость и термостойкость.

  1. ColorJetPrinting, CJP. Суть этой продвинутой технологии заключается в использовании композитного порошка на основе гипса и пластика, который не только подвергается послойному склеиванию, но и окрашиванию в самые разные цвета палитры CMYK, включающей до 390 000 оттенков! Пока возможность цветной печати предоставляет исключительно CJP. Кроме этого, данная АТ также делает возможным воспроизведение на поверхности продукции различных текстур в высоком разрешении. Несмотря на среднюю прочность и незначительную шероховатость конечных изделий, ColorJetPrinting, характеризующаяся низкой себестоимостью, активно применяется для создания архитектурных макетов, фигурок людей в миниатюре, презентационных образцов и других наглядных объектов.

  1. SelectiveLaserStering, SLS – селективное лазерное спекание. Здесь порошковые материалы (пластики и полиамиды) спекаются лазерным лучом. Такой метод одновременно подходит и для крупных промышленных изделий, и для объектов со сложной геометрией и детальной структурой, и для партий, которые выпускаются за 1 печатную сессию. Технологию SLS нередко путают с SelectiveLaserMelting, или SLM. Разница между ними заключается в том, что в первом случае сплавление оказывается частичным и осуществляется лишь по поверхности частиц, в то время как во втором результат – это получение цельного монолита.

Конференции в России

Национальный рынок АТ в России развит еще недостаточно. Потенциал сферы не раскрывается из-за дефицита кадров, недостатка материала и оборудования и отсутствия должной программы государственной поддержки.

И все же некоторые учреждения стараются собственными силами способствовать знакомству российского общества с передовыми достижениями AF. Одной из таких организаций является Всероссийский научно-исследовательский институт авиационных материалов (ВИАМ), представители которого ежегодно устраивают тематические конференции, посвященные аддитивным технологиям. Со своими докладами выступают отечественные и зарубежные ученые и работники промышленной сферы, заинтересованные в замене традиционных форм производства инновационными методами. В этом году мероприятие, состоявшееся 30 марта, стало уже 4 по счету. Принять участие в конференции, которая прошла под лозунгом «Настоящее и будущее», смогли участники, подавшие предварительные заявки.

Аддитивные технологии находят активное применение в энергомашиностроении, приборостроении, авиационной промышленности , космической индустрии, там, где высока потребность в изделиях сложной геометрии. В России с аддитивными технологиями познакомилось уже немало предприятий. Предлагаем вашему вниманию материал из альманаха «Управление производством» , в котором описывается несколько примеров эффективного внедрения 3D-печати.

Аддитивные технологии открыли возможность изготовления деталей любой сложности и геометрии без технологических ограничений. Геометрию детали можно менять еще на стадии проектирования и испытания.

Подготовка файлов для печати осуществляется на компьютерах со стандартным программным обеспечением , в работу принимаются файлы формата STL. Это широко используемый сегодня формат хранения трехмерных объектов для стереолитографических 3D-принтеров. Инвестиции в проект составили порядка 60 млн рублей.

Александр Зданевич, ИТ-директор НПК «Объединенная Вагонная Компания»: «Технологии аддитивной печати прогрессируют, и, вероятнее всего, уже в ближайшем будущем они изменят лицо целого ряда индустрий. Главным образом это касается предприятий, на которых выпускаются штучные товары под конкретный заказ. С массовым производством дело обстоит сложнее, хотя разные типы 3D-принтеров уже сейчас находят применение в данной области.


Существует множество технологий объемного синтеза. Одной из перспективных для промышленного внедрения является . Процесс можно разделить на два этапа. На первом формируется слой построения в виде равномерно распределенного по поверхности рабочей платформы жидкого фотополимера . Затем происходит выборочное отверждение участков данного слоя в соответствии с текущим сечением построенной на компьютере 3D-модели.

Применительно к железнодорожному машиностроению данную технологию можно использовать на этапе подготовки литейного производства, в частности, при производстве комплекта литейной оснастки. Один и тот же комплект оснастки, уникальный под каждую отливку, используется на протяжении тысяч циклов производства соответствующих литейных форм.

От соблюденной в процессе изготовления комплекта оснастки точности всех предусмотренных конструкторами параметров напрямую зависит качество конечного изделия. Традиционный способ изготовления комплекта оснастки путем механической обработки материалов (металла, пластика, иногда и дерева) весьма трудоемок и длителен (подчас занимает до нескольких месяцев), при этом чувствителен к ошибкам.

В «отпечатанные» модели можно встроить и другие узлы и агрегаты. Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

Значительную работу по продвижению аддитивных технологий проводит Госкорпорация «Росатом» . Руководство уверено, что скоро в госкорпорации будут присутствовать все компоненты «цифрового производства» – от разработки материалов, оборудования, технологий до производства изделий. В отрасли реализуется программа по аддитивным технологиям, она состоит из подразделов: технология, сырье, оборудование, стандартизация. Разработкой технологий производства металлических порошков для 3D-печати в Росатоме занимаются три института: «Гиредмет», ВНИИХТ, ВНИИНМ. Одновременно ведется работа по созданию опытного образца 3D-принтера для трехмерной печати металлических и композитных изделий. Росатом планирует представить образец уже к концу 2017 года.

Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

«К началу 2018 года мы должны весь цикл по аддитивным технологиям внутри Росатома замкнуть. Нам нужен еще год, чтобы запустить свой собственный пилотный образец установки, и примерно столько же – для того, чтобы договориться со всеми сторонами, которые обеспечивают используемую нормативную составляющую», – рассказал Алексей Дуб.

В структуре Росатома аддитивные технологии развиваются в топливной компании «ТВЭЛ», которая активно сотрудничает с созданным при УрФУ региональным инжиниринговым центром, работая над созданием российского 3D-принтера. Для Уральского электрохимического комбината и его предприятий порошковая металлургия не новинка. Например, на заводе электрохимических преобразователей порошки применялись при производстве фильтров для газовой диффузии урана при разделении изотопов, также для припоев и поверхностного напыления.

В научно-образовательном центре «Современные производственные технологии» Томского политеха

Одним из первопроходцев в области лазерных принтеров можно назвать научно-образовательный центр «Современные производственные технологии» Томского политехнического университета . Он укомплектован принтером электронно-лучевого сплавления (электронно-лучевым), лазерным принтером, принтерами, печатающими армированными композитами, а также ультразвуковым томографом, осуществляющим здесь же, «у станка», неразрушающий контроль готовых изделий. Специалисты центра изготавливают АМ-установки, разрабатывают программное обеспечение к ним и намерены продвинуться дальше «лаборатории».

В центре аддитивных технологий ТПУ настроен весь производственный цикл – от идеи до реализации готового изделия. Можно произвести и протестировать детали для обшивки космических кораблей, импланты для черепно-лицевой хирургии, изделия сложной формы для и многое другое, а также создать новые цифровые установки, например, для печати инструментов на МКС. «С помощью наших уникальных технологий мы можем создавать импортозамещающую продукцию, которая в разы дешевле импортных аналогов, при этом по качеству не хуже», – уверен директор центра Василий Федоров.

У развития аддитивных технологий есть и сдерживающие факторы.

  • Во-первых, высокая стоимость технологии (оборудования и материала), впрочем в процессе развития технологий цена постепенно снижается.
  • Во-вторых, нехватка квалифицированных, знающих технологию кадров.
  • В-третьих, недостаточная освоенность, отсутствие метрологического обеспечения вызывает опасения при производстве деталей высокой важности.
  • АМ-процессы (Additive Manufacturing) пока не интегрированы в технологию изготовления изделий. «Понятно, что любой ответственный конструктор не поставит в ответственное изделие деталь, не зная при этом, сколько она прослужит», – прокомментировал Алексей Дуб.
  • Важной задачей является необходимость разработки системы сертификации и стандартизации аддитивных изделий, технологических процессов, порошков и композиций. Для решения этих вопросов при Росстандарте был сформирован технический комитет, который ведет работу по созданию нормативной документации в сфере аддитивных технологий.
3D-принтинг начинает распространяться в мире, и Россия не должна отставать в этой области. Применение данных технологий позволяет удешевить изделие, ускорить его проектирование и производство.

– глава Минпромторга Денис Мантуров

Заключение

Популярность неуклонно растет. Хотя суммарный объем мирового рынка относительно невелик (порядка 6 млрд долларов), ежегодные темпы роста не могут не впечатлять – в среднем 20-30%. Впрочем единогласия в оценке роли аддитивных технологий в промышленности все еще нет: одни говорят, что внедрение методов 3D-печати приведет к закату промышленности в традиционном смысле, другие – что трехмерные принтеры станут лишь одним из элементов производственных схем. Но несмотря на все существующие разногласия, большие перспективы аддитивных технологий в промышленности невозможно отрицать.

Непосредственное выращивание изделий со сложной геометрией и из специфических материалов оказывается весьма выгодным с экономической точки зрения. Оно позволяет экономить материал, время, снижает риск ошибок. 3D-принтеры перестали быть «дорогой игрушкой», сегодня они занимают полноправное место среди ключевых технологий