Биологические свойства. Токсичность. Мировой рынок рения Тугоплавкий металл рений

К началу 2013 года рынок рения испытал три года относительного спокойствия после значительной изменчивости с конца 2006 по 2009 год, когда наличная цена достигла максимума почти в 12000 долл./кг на фоне круто возросшего потребления в космических суперсплавах. Начиная с конца 2009 года наличная цена на рений оставалась ниже 5000 долл./кг и снизилась до уровня 3500-3700 долл./кг в январе 2013 года.

Несмотря на некоторые проблемы в промышленности, Roskill полагает, что основные и вторичные ресурсы в настоящее время достаточны, чтобы позволить производителям и потенциальным производителям идти в ногу со спросом. Это должно означать продолжение периода стабильности на рынке рения и безопасность поставок потребителям по приемлемым ценам.

Рений обладает сопротивлением к оплавлению и входит в состав суперсплавов для изготовления лезвий газовых турбин, используемых при чрезвычайно высоких температурах в аэро двигателях и промышленных газовых турбинах. Из-за страхов относительно безопасности поставки у цены на рений были периоды большой изменчивости, что, таким образом, отталкивало производителей сплавов полагаться на металл.

В начале 2000-х годов рынок рения, вероятно, находился в профиците, поскольку производство продолжило увеличиваться, несмотря на снижение объемов выпуска аэродвигателей в период между 2002 и 2005 годами. С 2007 до 2009 год производство рения было ниже, а потребность в металле со стороны авиакосмической промышленности, напротив, стала увеличиваться. В результате излишки, которые росли в начале 2000-х годов, были быстро израсходованы.

В период между 2009 и 2012 годами поставки рения, вероятно, были в приблизительном балансе с потреблением. В ближайшие годы, по прогнозам Roskill, производители должны лучше понимать рынок и быть в состоянии регулировать объемы выпуска металла в соответствии со спросом.

В дополнение к своему неоценимому вкладу в стабильность суперсплавов и безопасность аэрореактивных двигателей, рений используется в преобразующих катализаторах в производстве высокооктановых нефтепродуктов.

Он также используется в качестве промоутера в катализаторах в операциях газ-к-жидкости, и хотя пока это небольшая сфера потребления, она может стать намного более важной в долгосрочной перспективе в свете быстрого расширения добычи сланцевого газа в США и в других странах.

Основные области применения рения

Суперсплавы на основе никеля, содержащие рений, используются в камерах сгорания турбинных лопаток и выхлопных сопел реактивных двигателей. Эти сплавы обычно содержат 3%, а некоторые даже 6% рения, что делает строительство реактивных двигателей самой большой сферой использования для элемента, который имеет критическое стратегическое военное значение для использования в высокопроизводительных военных реактивных и ракетных двигателях.

Следующая по значимости сфера потребления рения - это биметаллические катализаторы из платины и рения для химической промышленности, которые используются при переработке нефти для производства высокооктановых углеводородов, которые используются в производстве бензина, без содержания свинца. Другие применения – это содержащий сплавы в конструкции тиглей, электрические контакты, электромагниты, электронные лампы, нагревательные элементы, датчики ионизации, масс-спектрографы, металлические покрытия, полупроводники, датчики контроля температуры, термопары и вакуумные трубки.

Цены на рений

Из-за его низкой доступности по сравнению со спросом, рений является одним из самых дорогих металлов. Согласно историческим данным, опубликованным на Metalprices.com, средняя ежемесячная спотовая цена рения в период с декабря 2010 года по август 2012 года составила 4318 долл./кг. Диапазон цен в течение этого времени был: минимум около 4050 долл./кг, а максимум около 4550 долл./кг. Тем не менее, в тот же период времени, в среднем цена металлического рения, на основе данных Бюро переписи населения США о таможенной стоимости, составила около 2000 долл./кг, что намекает на существование двухуровневого рынка. Причина такого различия спотовой цены и статистики импорта заключается в долгосрочных договорах (LTAS) между крупнейшим в мире экспортером рения Molymet (Чили) и крупнейшими в мире потребителями металла, которые являются производителями реактивных двигателей: GE, Pratt & Whitney и Rolls Royce и их контрактными партнерами по производству сплавов.

Система LTAS была создана много лет назад и ее строго придерживаются, несмотря на резкие колебания на спотовом рынке, где цены на рений достигали 12000 долл./кг в августе 2008 года. LTAS и соглашения на их основе о поставках по фиксированной цене - несомненная польза для производителей реактивных двигателей в течение нескольких последних лет - истекают в 2013 году. Многие в отрасли подозревают, что Molymet примет схему ценообразования, основанную больше на рыночных ценах, вместо сохранения нынешней схемы долгосрочных контрактов с низкой ценой.

Прогноз мирового рынка рения

Соединения рения, содержащиеся в молибденовых концентратах, получают из медно-порфировых месторождений, а рений извлекают в виде побочного продукта при обжиге таких молибденовых концентратов.

Рений-содержащие продукты включают в себя перренат аммония (APR), металлический порошок и рениевую кислоту. По сравнению с 15 млн. тонн меди, из руд которой он выделяется, поставки первичного рения ежегодно составляют приблизительно 46 тонн, а спрос на металл - около 54 тонн. Но этот небольшой рынок имеет большие сферы применения, например, 3%-ная добавка в никелевых жаропрочных сплавах и 0,3% с платиной в биметаллических катализаторах для производства нефтепродуктов.

Большую часть рения экспортируется в виде металлических гранул с чистотой 99,9%, при этом 90% и даже более – это экспорт в США. Более 80% мирового рения потребляется в производстве жаропрочных сплавов для применения в основном в сплавах для производства реактивных авиационных двигателей газовых турбин. Нынешние прогнозы в отношении будущего спроса на рений со стороны аэрокосмической промышленности «бычие», так как глобальный парк воздушных судов, как ожидается, удвоится в течение следующих 20 лет. По последнему прогнозу компании Boeing, количество воздушных перевозок будет расти в среднем на 5% в год в течение следующих двух десятилетий, а рост грузовых перевозок составит в среднем 5,2% в год. В дополнение к этим сильным прогнозам в отношении гражданских самолетов, военные инвестиции в высокотехнологичные самолеты приведет к дальнейшему увеличению объемов производства реактивных двигателей. Например, в начале августа 2012 года, Россия объявила о своих планах по модернизации ВВС до 2020 года и о выделении $723 млрд. на покупку 600 новых самолетов, 1000 новых вертолетов и капитальный ремонт существующих самолетов за этот период.

В своем седьмом ежегодном обзоре рынка самолетов, выпущенном в декабре 2013 года, Boeing прогнозирует, что инвесторы на крупнейших рынках самолетов обеспечат финансирование еще одного рекордного года по выпуску лайнеров в мире. Общая стоимость контрактов на поставку коммерческих самолетов может достичь $112 млрд. в 2014 году, при этом совокупная доля Boeing и его европейского конкурента Airbus составит 95% этого рынка.

Рений (от латинского Rhenium) в периодической системе Дмитрия Ивановича Менделеева обозначается символом Re. Рений - химический элемент побочной подгруппы седьмой группы, шестого периода; его атомный номером 75, а атомный вес 186,21. В свободном состоянии семьдесят пятый элемент - тяжелый (только осмий, иридий и платина по плотности немного превосходят рений), прочный, тугоплавкий светло-серый металл, довольно пластичный (его можно прокатывать, ковать, вытягивать в проволоку), по внешнему виду напоминающий платину. Естественно, что пластичность рения, как и большинства других металлов, зависит от чистоты.

Известно тридцать четыре изотопа рения от 160Re до 193Re. Природный рений состоит из двух изотопов - 185Re (37,40 %) и 187Re (62,60 %). Единственный стабильный изотоп - 185Re, изотоп 187Re радиоактивен (испытывает β-распад), но период полураспада огромен - 43,5 миллиарда лет. Испуская β-лучи, 187Re превращается в осмий.

История открытия семьдесят пятого элемента весьма протяженная по времени: еще в 1871 году Д. И. Менделеев говорил, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем. Многие пытались заполнить пустующие клетки, однако ни к чему, кроме отработанных вариантов, это не привело. Правда, для химиков XX века круг поисков значительно сузился благодаря стараниям многих ученых со всего мира.

Результата добились немецкие химики - супруги Вальтер и Ида Ноддак, занявшиеся данной проблемой в 1922 году. Проделав колоссальную работу по рентгеноспектральному анализу более чем полутора тысяч минералов, Вальтер и Ида в 1925 году заявили об открытии недостающих элементов, сорок третья позиция в периодической системе, по их мнению, должна была заняться «мазурием», а семьдесят пятая - «рением». Проверить достоверность научного открытия вызвался известный немецкий химик Вильгельм Прандтль. Жаркая полемика продолжалась долго, результатом которой была патовая ситуация - убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений в 1926 году был уже выделен в количестве двух миллиграмм! Кроме того, открытие нового элемента подтверждали независимые работы других ученых, которые всего на несколько месяцев позже супругов Ноддак начали свои поиски семьдесят пятого элемента. Однако новому семьдесят пятому элементу было суждено получить имя от своих первооткрывателей, которые назвали его в честь Рейнской провинции Германии - родины Иды Ноддак.

Большая часть получаемого рения расходуется на создание сплавов, обладающих особыми свойствами. Так, рений и его сплавы с молибденом и вольфрамом применяются в производстве электрических ламп и электровакуумных приборов - ведь они имеют больший срок службы и являются более прочными, чем вольфрам. Из сплавов вольфрама с семьдесят пятым элементом изготовляют термопары, которые можно использовать в интервале температур от 0 до 2 500 °C. Жаропрочные и тугоплавкие сплавы рения с вольфрамом, танталом, молибденом применяются при изготовлении некоторых ответственных деталей. Семьдесят пятый элемент используется при изготовлении нитей накала в масс-спектрометрах и ионных манометрах. Рений и некоторые его соединения служат катализаторами при окислении аммиака и метана, гидрировании этилена. Кроме того, из рения делают самоочищающиеся электрические контакты, а также этот редкий и весьма ценный элемент используется при изготовлении реактивных двигателей.

Биологические свойства

О биологических свойствах семьдесят пятого элемента известно очень мало. Возможно, данный факт связан с поздним открытием этого металла, и в дальнейшем человечество сможет сказать нечто более определенное по поводу биологической роли рения в живых организмах. Сейчас утверждается, что участие рения в биохимических процессах маловероятно.

Весьма слабо изучена токсичность рения и его соединений, известно лишь, что растворимые соединения рения мало токсичны. Пыль металлического рения не вызывает интоксикации, а при введении через органы дыхания приводит к слабо текущему фиброзу. Семиокись рения Re2O7 более токсична, чем металлическая пыль рения. При концентрации ее в воздухе 20 мг/м3 однократное действие вызывает острый процесс в легких; при концентрации 6 мг/м3 (при постоянном действии) появляется слабо выраженная интоксикация. Во всяком случае, при работе с соединениями рения следует быть осторожным. Экспериментальному токсикологическому изучению подвергались лишь перренаты калия и натрия и некоторые хлористые соединения рения. При этом, введенный в организм рений спустя 1-1,5 часа обнаруживается в органах, накапливаясь (подобно элементам VII группы) в щитовидной железе. Тем не менее, рений быстро выводится из организма: через сутки выводится 9,2 % от всего поступившего, спустя 16 суток - 99 %. Перренат калия не оказал токсического действия при внутрибрюшном введении лабораторным белым мышам в количестве 0,05-0,3 мг. Внутрибрюшное введение NaReO4 в количестве 900-1000 мг/кг вызывало смерть лабораторных крыс. У собак при внутривенном введении 62-86 мг NaReO4 наблюдалось кратковременное повышение артериального давления. Определенно большей токсичностью обладают хлориды рения.

На фоне этих скудных исследований токсикологии рения и его соединений куда важнее выглядят другие научные изыскания, связанные с семьдесят пятым элементом. Речь идет о разработках новейших технологий получения различных медицинских изотопов. Ведь уже известно, что достижения в области ядерной медицины позволяют не только осуществлять уникальную диагностику, но и излечивать тяжелые заболевания.

В этой связи особого внимания заслуживает рений-188. Этот изотоп относится к числу так называемых «волшебных пуль». Препараты на его основе, позволяют осуществлять радионуклидную диагностику новообразований скелета, метастаз опухолей различной локализации в кости, воспалительных заболеваний опорно-двигательного аппарата. Этот радионуклид имеет очень хорошие характеристики для терапии: период полураспада семнадцать часов, β-излучение с пробегом в ткани около 0,5 см, а наличие γ-излучения с энергией 155 кэВ позволяет с использованием γ-камер осуществлять «слежение» за радиофармпрепаратом. Весьма существенно, что помимо терапевтического действия радиофармпрепараты с рением-188 значительно уменьшают болевые синдромы при метастазах в скелете. Более того, применение терапевтических препаратов на основе рения-188 позволяет препятствовать тромбообразованию. И что самое главное - рений-188 не имеет аналогов за рубежом, является научной разработкой российских ученых, а следовательно, он более доступен.

Препарат получают в Радиевом институте имени В. Г. Хлопина с использованием генератора, где в качестве исходного радиоизотопа применяется 188W с периодом полураспада 69 дней. Вольфрам-188 образуется при облучении нейтронами изотопа вольфрама-186. Работы по созданию централизованного генератора 188Re на основе центробежного экстрактора в Радиевом институте были начаты в 1999 г. совместно с НИКИМТ. Исследования, проведенные на высокоактивных растворах, показали хорошие перспективы создания экстракционного генератора 188Re: выход рения составляет более 85 %; радиохимическая чистота более 99 %.

Своим именем семьдесят пятый элемент обязан реке Рейн (стоит отметить, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести) и Рейнской области - родине Иды Ноддак (Такке). Впрочем, здесь же сам рений впервые и увидел свет - промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с высоким содержанием рения - сто грамм на тонну. Что касается якобы открытого супругами Ноддак сорок третьего элемента - «мазурия», то, считается, что своё имя он получил в честь Мазурской области - родины Вальтера Ноддака (на самом деле, Ноддак родился в Берлине, учился и работал в Берлинском университете). Открытие «мазурия» не было подтверждено, а в последствии этот элемент был синтезирован искусственно и получил название «технеций».

Возможно выбор имен совпадение, однако некоторые историки химии считают, что оба названия содержат большую долю национализма: рейнская область и мазурские озера оказались во время первой мировой войны местами крупных удачных для германских войск сражений. Вполне вероятно, что несуществующий элемент был назван в честь победы немецких войск в 1914 году над русской армией генерала Самсонова у Мазурских болот.

Известно, что существует рений-осмиевый метод определения возраста минералов. С его помощью был определен возраст молибденитов из месторождений Норвегии и Чили. Оказалось, что норвежские молибдениты в большинстве случаев образовались примерно 700-900 миллионов лет назад. Молибдениты Чили (из месторождения Сан-Антонио) намного моложе: их возраст всего 25 миллионов лет.

Нам хорошо известны такие способы борьбы с коррозией, как хромирование, никелирование, цинкование, однако, вы наверняка не слышали о ренировании, ведь процесс этот сравнительно новый, однако весьма действенный - тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают различные детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ. Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в полости электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах. На вольфрам эти нежелательные примеси действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Особый интерес металлургов и металловедов вызывает «рениевый эффект» - благотворное влияние рения на свойства вольфрама и молибдена (Re повышает одновременно и прочность, и пластичность Mo и W). Данное явление было открыто в Англии в 1955 году, тем не менее, природа «рениевого эффекта» еще недостаточно изучена. Предполагается, что в процессе производства в вольфрам и молибден иногда проникает «инфекция» углерода. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким. У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден.

Нашей стране уже известны истории попыток «сравнительно честного» отъёма ценных ресурсов. Не обошли стороной и столь редкий элемент, как рений. В 1929 году крупная западная фирма обратилась к директору одного из металлургических заводов Сибири с выгодным, как казалось, предложением - продать ей отвалы пустой породы, скопившиеся около заводской территории. Заподозрив подвох, директор завода распорядился провести экспертизу якобы пустой породы. И действительно, оказалось, что отвалы содержат редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической!

Другой пример попыток подобного «изъятия» происходит в наше время - в 1992 году сотрудники Института экспериментальной минералогии и Института геологии рудных месторождений, производя режимное наблюдение на вулканах Южнокурильской гряды и на вершине вулкана Кудрявый на острове Итуруп в местах выхода вулканического газа, обнаружили новый минерал - рениит. Напоминающий молибденит, сульфид рения содержит до 80 % редкого металла, а ведь это уже заявка на возможность промышленного использования рениита для получения рения! И хотя сульфида рения в самом вулкане накопилось немного (10-15 тонн), однако учеными подсчитано, что ежегодно с газами вулкан выбрасывает в атмосферу до 20 тонн рения, а уж как уловить ценный металл из этих газов наука знает давно. Не связано ли это с новой волной территориальных претензий Японии?

История

Открытие периодического закона позволило предположить существование элементов, ранее не обнаруженных, но которые просто «должны» были существовать и занимать отведенные им места в таблице. Некоторые из таких элементов даже были подробно описаны: «экабор» (скандий), «экаалюминий» (галлий) и «экасилиций» (германий). Что касается недостающих элементов VII группы - аналогов марганца, то их существование в 1871 году предположил сам автор периодической системы - Д.И. Менделеев. Дмитрий Иванович назвал отсутствующие элементы № 43 и № 75 подгруппы марганца «экамарганцем» и «двимарганцем» (от санскритских «эка» - один и «дви» - два). Сообщения об открытии этих элементов (уралий, люций, плюраний, ильмений, ниппоний, дэвий) стали появляться довольно скоро, однако ни одно не подтверждалось на деле. Единственным исключением можно назвать дэвий, открытый русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви. Этот элемент давал реакцию, которую и в наше время используют в аналитической химии для определения рения. Однако сообщение С. Керна не приняли всерьез, потому что повторить его опыты не удалось…

Период неопределенности продолжался довольно долго, пока поиском марганцевых эквивалентов не занялись немецкие ученые-химики Вальтер Ноддак и Ида Такке, ставшая позже супругой Ноддака. Прекрасно зная законы периодической системы, немецкие химики удостоверились в том, что найти элемент под номером 75 будет нелегко, ведь в природе элементы с нечетными атомными номерами распространены всегда меньше, чем их соседи слева и справа. Так как элементы № 74 и № 76 (вольфрам и осмий) довольно редки, то, следовало предположить, что элемент № 75 распространен еще меньше. Зная, что содержание осмия в земной коре составляет величину порядка 10-6 %, Вальтер и Ида Ноддак предположили, что для элемента № 75 следовало ожидать величины еще меньшей, примерно 10-7 %.

Поиски столь редкого элемента начались с изучения платиновых руд, а также редкоземельных минералов - колумбита и гадолинита. Правда, от платиновых руд вскоре пришлось отказаться - слишком дорогой материал для изучения, однако работы это не убавило - более доступных руд для исследования хватало. Супруги Ноддак и их помощник Отто Берг работали, не покладая рук: изо дня в день им приходилось выделять из каждого нового элемента доступные для рентгеноскопического исследования препараты, что требовало многократного повторения однообразных и долгих операций - растворения, выпаривания, выщелачивания, перекристаллизации. Три года тяжелой кропотливой работы, более 1 600 проверенных образцов, и вот, наконец, в рентгеновском спектре одной из фракций колумбита были обнаружены пять новых линий, принадлежащих элементу № 75! Новый элемент получил имя «рений» - в честь реки Рейн и Рейнской провинции, родины Иды Ноддак. Об открытии «двимарганца» группа немецких ученых во главе с Идой и Вальтером Ноддак сообщила в Нюрнберге в собрании немецких химиков 5 сентября 1925 года, а уже в следующем году они выделили из минерала молибденита MoS2 первые два миллиграмма рения.

Несколько месяцев спустя вслед за открытием супругов Ноддак чешский химик И. Друце и англичанин Ф. Лоринг сообщили об открытии элемента № 75 в марганцевом минерале пиролюзите МnO2. Кроме того, чешские ученые Я. Гейровский и В. Долейжек установили наличие следов рения в неочищенных марганцевых препаратах с помощью изобретенного Я. Гейровским полярографа, позже Долейжек подтвердил наличие нового элемента рентгенографическими исследованиями.

Таким образом, рений стал последним элементом, обнаруженным в природных минералах - в дальнейшем пустые клетки периодической системы заполнялись искусственно полученными элементами (с помощью ядерных реакций).

Нахождение в природе

Рений - редчайший и весьма сильно рассеянный элемент, по современным оценкам (по версии академика А.П. Виноградова) его кларк (среднее содержание в природе) в земной коре равен 7 10–8 % (по массе), что еще меньше, чем предполагалось ранее (1 10–7 %). Кларк рения меньше, чем кларк любого металла из группы платиноидов или лантаноидов, считающихся одними из самых редких. На самом деле, если не принимать во внимание кларки инертных газов в земной коре, то можно назвать рений самым редким из элементов со стабильными изотопами. Чтобы понять насколько этот элемент редкий лучше всего сравнить его с другими металлами, например, золота в природе в 5 раз больше, серебра в 100 раз больше, чем рения; вольфрам в 1 000 раз распространеннее семьдесят пятого элемента, а марганец в 900 000 раз!

Рений (за редкими исключениями) не образует собственных минералов, а лишь сопутствует минералам различных элементов - от повсеместно распространенного пирита до редких платиновых руд. Следы его находят даже в бурых углях. Собственные минералы рения (к примеру, джезказганит, Pb4Re3Mo3S16) настолько редки, что представляют не промышленный, а скорее научный интерес. Джезказганит был обнаружен в джезказганских медных и медно-свинцово-цинковых рудах, разрабатываемых вблизи казахского города Джезказган (современное название - Жезказган). Минерал представляет собой тонкие прожилки (вкрапления в породу) длиной не больше 0,1 мм; исследования советских ученых установили, что джезказганит содержит сульфид рения, а также сульфиды молибдена и свинца.

Самым богатым промышленным рений содержащим минералом является молибденит MoS2, в котором находят до 1,88 % рения, это легко объясняется ярко выраженным геохимическим сходством рения и молибдена: оба металла проявляют одинаково высокое сродство к сере, высшие галогениды молибдена и рения обладают повышенной летучестью и близкой реакционной способностью. Кроме того, ионные радиусы четырехзарядных ионов Re4+ и Mo4+ практически одинаковы. Однако молибденит не единственный минерал, содержащий семьдесят пятый элемент - довольно велико содержание рения в минералах гранитных пегматитов (цирконе, альвите, колумбите, танталите, гадолините и других), в которых рений заключен в виде тонко рассеянных сульфидов. Этот металл есть в медистых песчаниках (группа месторождений Джезказганского региона в Казахстане), медно-молибденовых и полиметаллических рудах, в колчеданах, он обнаружен и в минералах платины и вольфрама. Отмечается накопление рения, наряду с другими тяжелыми металлами, в битуминозных остатках.

Относительно велико содержание рения в метеоритном железе - 0,01 г/т, что значительно превышает кларк рения в земной коре. Зато в минералах своего аналога - марганца, рений почти не содержится! Причиной такого отсутствия является, скорее всего, заметное различие в радиусах ионов Mn2+, Mn3+ и Re4+. Казалось бы - рений находят во многих рудных месторождениях - следовательно, не так уж и редок этот элемент, однако еще не известно ни одного месторождения, промышленную ценность которого определял бы только рений. Почти всегда рения в таких рудах очень мало - от миллиграммов до нескольких граммов на тонну. Его повсеместное присутствие объясняется миграцией в земной коре. В подземных водах содержатся вещества, имеющие воздействие на минералы содержащие рений. Под влиянием этих веществ заключенный в них рений окисляется до Re2O7 (высший окисел, который образует сильную одноосновную кислоту HReO4). Этот оксид в свою очередь реагирует с оксидами и карбонатами щелочных металлов, вследствие чего образуются водорастворимые соли - перренаты. Вот почему рений отсутствует в окисленных рудах цветных металлов и присутствует в водах шахт и карьеров, где добывают руды многих металлов. В воде артезианских скважин и естественных водоемов, расположенных близ ренийсодержащих рудных месторождений, тоже находят следы этого элемента.

По предположению академика А. Е. Ферсмана, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Поэтому в будущем возможно открытие богатейшего рениевого месторождения где-нибудь в недрах нашей Земли. Считается, что первое место по запасам рения занимают США (62 % мировых запасов), второе место принадлежит Казахстану.

Применение

Вплоть до начала семидесятых годов двадцатого века спрос на рений был ниже предложения. Цены на этот металл из года в год оставались на одном уровне, а государства, производящие семьдесят пятый элемент не видели смысла в повышении производительности и продолжали выплавку рения на старом уровне - тонна, две в год. Мировая рениевая промышленность находилась в относительном покое, до тех самых пор, пока не началось освоение новых катализаторов нефтеперерабатывающей промышленностью. Опытные образцы рениево-платиновых катализаторов позволили намного увеличить выход бензинов с высоким октановым числом. Дальнейшие же исследования показали, что использование этих катализаторов вместо устаревших платиновых позволяет на 40-45 % увеличить пропускную способность установок. К тому же срок службы новых катализаторов в среднем в четыре раза больше, чем старых. С тех пор примерно 65 % производимого в мире рения идет на получение платинорениевых катализаторов для нефтеперерабатывающей промышленности (получение бензина с высоким октановым числом). Такой бурный всплеск потребности и интерес к редкому металлу вызвал рост цен и спрос на него в разы. Поскольку платина и рений весьма дороги, эти катализаторы регулярно, через 3-5 лет, подлежат восстановлению для вторичного использования. При этом потери металла не превышают 10 %.

Другая обширная область применения рения, некогда использовавшая большую долю производимого в мире металла - металлургия. Благодаря своим уникальным свойствам (очень высокая температура плавления, устойчивость к химическим реагентам и прочие) семьдесят пятый элемент частый компонент жаропрочных сплавов на основе вольфрама и молибдена, а также сплавов на основе никеля, хрома, титана и других элементов. Причем сплавы рения с другими тугоплавкими металлами (такими как вольфрам, молибден или тантал) имеющие высокие жаропрочные характеристики используются при изготовлении деталей сверхзвуковых самолетов и ракет.

Наиболее используемые сплавы вольфрама с 5, 20 или 27 % рения (ВР-5, ВР-20, ВР-27ВП) и молибдена - с 8, 20 и 47 % рения, а также молибден-вольфрам-рениевые сплавы. Такие сплавы высокопрочны, пластичны (и, следовательно, технологичны), хорошо свариваются. Изделия из них сохраняют свои свойства и формы в самых трудных условиях эксплуатации. Рений работает на морских судах и самолетах, в космических кораблях (сплав тантала с 2,5 % рения и 8 % вольфрама предназначен для изготовления теплозащитных экранов аппаратов, возвращающихся из космоса в атмосферу Земли) и в полярных экспедициях. Сплав никеля с рением, называемый «монокристаллическим», используется для изготовления деталей газовых турбин. Ведь именно такой сплав обладает большой стойкостью к высоким температурам и резким температурным перепадам, он выдерживает температуру до 1 200 °С, поэтому в турбине можно поддерживать стабильно высокую температуру, полностью сжигая горючее, так что при этом с выхлопными газами выбрасывается меньше токсичных веществ и сохраняется высокий КПД турбины. В настоящее время ни одна газовая турбина не изготавляется без использования ренийсодержащего жаропрочного сплава. Для атомной техники сплавы, содержащие рений (сплав вольфрама с 26 % рения) - перспективный конструкционный материал (оболочки ТВЭЛов и прочих деталей, работающих в реакторах при температурах от 1 650 до 3 000 °С).

Семьдесят пятый элемент стал важным материалом для электронной и электронно-вакуумной промышленности. Именно данные области полностью раскрывают потенциал этого металла и его сплавов. Особенно широко в этих отраслях использует рений Япония (65-75 % своего потребления). Из рения и сплавов на его основе делают нити накала, сетки, подогреватели катодов. Детали из сплавов рения есть в электронно-лучевых трубках, приемно-усилительных и генераторных лампах, в термоионных генераторах, в масс-спектрометрах и других приборах. Из сплавов содержащих рений делают, в частности, керны (опора, на которой вращается рамка прибора) измерительных приборов высших классов точности. Материал таких опор должен отвечать ряду строгих условий: высокая твердость, немагнитность, высокая коррозионная стойкость, малый износ в процессе эксплуатации. Всем этим условиям отвечает многокомпонентный сплав на кобальтовой основе 40 КНХМР, легированный 7 % рения. Этот же сплав используют для производства упругих элементов крутильных весов и гироскопических приборов.

Рений используют при изготовлении вольфрам-рениевых термопар, позволяющих измерять температуры до 2 600 °C. Такие термопары значительно превосходят применяемые в промышленности стандартные термопары из вольфрама и молибдена. Кроме того, рений является прекрасным материалом для электрических контактов, покрытий, рентгеновских трубок, ламп-вспышек и вакуумных ламп. Наконец, на реакции β-распада 187Re основан рений-осмиевый метод определения возраста горных пород и метеоритов.

Производство

Производственное освоение рения началось в Германии в 1929 году, тогда «мировое производство» этого металла составляло всего 3 г! Однако уже к 1940 году Германия обладала запасами в 200 кг рения, чего вполне хватало для мирового потребления тех лет. После начала второй мировой войны американцы начали извлекать рений из молибденовых концентратов и в 1943 году получили 4,5 кг собственного семьдесят пятого элемента. После окончания второй мировой войны число стран производителей рения резко возросло - к Германии и США добавились СССР, Англия, Франция, Бельгия и Швеция. Тем не менее, даже в наши дни производство рения значительно уступает производству многих редких металлов - добыча подобных распыленных элементов представляет даже при нынешнем уровне знания и при разнообразии приемов достаточно сложную задачу.

Любое рудное сырье, содержащее семьдесят пятый элемент - это комплексное сырье, в котором далеко не рений главное богатство, с чем, собственно, и связаны большие потери и без того скудного элемента рения. Основные сырьевые источники семьдесят пятого элемента рения - молибденитовые концентраты (содержание рения 0,01-0,04 %), медные концентраты некоторых месторождений (0,002-0,003 % рения), отходы от переработки медистых сланцев (например, свинцово-цинковые пыли, содержащие 0,04 % рения), а также сбросные воды гидрометаллургической переработки бедных молибденитовых концентратов (10-50 мг/л рения).

Дело в том, что способы извлечения рения во многом зависят от специфики технологии производства основных металлов, а чаще всего технологические схемы извлечения основных металлов и рения не совпадают, что приводит к потерям семьдесят пятого элемента. Так, при флотационном обогащении молибденовых и медно-молибденовых руд от 40 до 80 % бывшего в руде рения переходят в молибденовый концентрат, а в рениевые слитки, в конечном счете, превращается лишь незначительная часть этого металла, добываемая из уже переработанных отвалов. По подсчетам американских ученых из молибденовых концентратов богатых рением извлекается всего 6 % этого металла от общего содержания. Но и при флотационном обогащении медно-молибденовых руд рений не теряется, а всего лишь переходит в молибденовый концентрат, потери начинаются дальше - при обжиге концентратов и в процессе плавки.

Технология обработки молибденовых концентратов включает обязательный окислительный обжиг при 550...650° C, а при таких температурах, как мы хорошо знаем, активно начинает окисляться и рений, в основном до Re2O7 - рениевый ангидрид летуч, получается, что большое количество семьдесят пятого элемента просто «вылетает в трубу». На различных стадиях производства черновой меди рений также удаляется с отходящими газами. Получается, чтобы получить рений на молибденовых предприятиях необходимо, прежде всего, уловить его из уходящих газов. Для этого на заводах устанавливают сложные системы циклонов, скрубберров, электрофильтров. В итоге рений концентрируется в шламовых растворах, образующихся при очистке пылеуловительных систем. Если печные газы направляются на производство H2SO4, рений концентрируется в промывной кислоте электрофильтров.

Для извлечения рения из пыли и шламов применяют выщелачивание слабой серной кислотой или теплой водой с добавкой окислителя (МnО2). В случае неполной возгонки рения (в многоподовых печах она составляет всего 50...60 %, в печах кипящего слоя - почти 96 %) при обжиге молибденитовых концентратов, часть его остается в металлическом огарке и затем переходит в аммиачные или содовые растворы выщелачивания огарков. Таким образом, источниками получения рения при переработке молибденитовых концентратов могут служить сернокислотные растворы мокрых систем пылеулавливания и маточные растворы после гидрометаллургической переработки огарков.

Из растворов рений извлекают в основном сорбционными (с применением слабо- и сильноосновных ионитов) и экстракционными (экстр-агентами выступают триалкиламин, трибутилфосфат и прочие соединения) методами. В результате десорбции или реэкстракции растворами NH3 образуется NH4ReO4, восстановлением которого водородом получают порошок рения:

2NH4ReO4 + 7H2 → 2Re + 2NH3 + 8H2O

Восстановление осуществляют в две стадии: первая протекает при 300-350 °С, вторая - при 700-800 °С. Полученный порошок прессуют в штабики, которые спекают при 1 200-1 300 °С, а затем при 2 700-2 850 °С в токе водорода. Спеченные штабики уплотняют ковкой или прокаткой на холоду с промежуточными отжигами. Для получения компактного рения применяют также плавку в электроннолучевых печах.

В последнее время разрабатываются новые способы гидрометаллургической переработки концентратов содержащих рений. Такие методы более перспективны в основном потому, что нет тех огромных потерь рения, которые неизбежны в пирометаллургии. Уже сейчас семьдесят пятый элемент извлекают из концентратов различными растворами - в зависимости от состава концентрата, а из этих растворов - жидкими экстр-агентами или в ионнобменных колоннах.

Физические свойства

Рений - серебристо-серый металл, своим внешним видом напоминающий сталь или платину. Порошок металла - чёрного или темно-серого цвета в зависимости от дисперсности. Рений кристаллизуется в гексагональной плотноупакованной решетке с параметрами а = 2,760 A, с = 4,458 A, z = 2. Атомный радиус 1,373 A, ионный радиус Re7+ 0,56 A. В полном соответствии с положением в таблице Менделеева, рений во многом похож на марганец. В основном эта схожесть на уровне строения атомов - имея в наружном электронном слое атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако у семьдесят пятого элемента больше отличий - рений четвёртый в списке элементов с наибольшей плотностью в твёрдом состоянии (21,02 г/см3), то есть тяжелее этого элемента только осмий (22,5 г/см3), иридий (22,4 г/см3) и платина (21,5 г/см3).

Вообще по своим физическим свойствам рений схож с тугоплавкими металлами VI группы вольфрамом и молибденом, а также с металлами платиновой группы. Кроме близости ряда физических характеристик с молибденом его роднит и близость атомного и ионных радиусов. Например, радиусы ионов Re4+ и Мо4+ отличаются всего на 0,04 ангстрема. Сульфиды MoS2 и ReS2 образуют к тому же однотипные кристаллические решетки. Именно этими причинами объясняют геохимическую связь рения с молибденом. Рений лишь немного тяжелее вольфрама, плотность которого 19,32 г/см3, по температуре плавления (3 180 °С) он уступает вольфраму (3 400 °С), однако температуры кипения обоих металлов настолько высоки, что их не могли с точностью определить долгое время - для рения она порядка 5 870 °С, для вольфрама 5 900 °С. Однако существует и немаловажное различие - рений гораздо пластичнее вольфрама: его можно прокатывать, ковать, вытягивать в проволоку при обычных условиях.

Рений пластичен в литом и рекристаллизованном состоянии и деформируется на холоде. Только вот пластичность рения, как и многих других металлов, во многом зависит от чистоты. Известно, что примеси кальция, железа, никеля, алюминия и других элементов снижают пластичность рения. Модуль упругости семьдесят пятого элемента 470 Гн/м2, или 47 000 кгс/мм2 (выше, чем у других металлов, за исключением осмия и иридия), что обуславливает высокое сопротивление деформации и быстрый наклеп при обработке давлением. Для восстановления пластичности и снятия наклепа рений отжигают в водороде, инертном газе или вакууме.

Еще одно важное свойство рения - высокая жаропрочность. Рений отличается высокой длительной прочностью при температурах 500-2 000 °С, он выдерживает многократные нагревы и охлаждения без потери прочностных показателей. Его прочность при температуре до 2 000 °C выше, чем у вольфрама, и значительно превосходит прочность молибдена и ниобия. Твердость по Виккерсу отожженного рения 2 450 МПа, деформированного - 7 840 МПа. Удельное объемное электросопротивление рения при температуре 20 °С составляет 19,3 10-6 ом см, что в четыре раза больше, чем у вольфрама и молибдена. Термический коэффициент линейного расширения для рения равен 6,7 10-6 (в интервале температур от 20 до 500° С); удельная теплоемкость рения 153 дж/(кг К) или 0,03653 кал/(г град) (при температурах от 0 до 1 200 °С); теплопроводность 48,0 Вт/(м К) при температуре 25° С и 46,6 Вт/(м К) при температуре 100° С. Температура перехода рения в состояние сверхпроводимости 1,699 К; работа выхода электрона 4,80 эВ. Рений парамагнитен, удельная магнитная восприимчивость этого элемента составляет +0,368 10-6 (при температуре 20,2° С).

Химические свойства

У атома рения семь внешних электронов; конфигурация высших энергетических уровней 5d56s2. По своим химическим свойствам - особенно стойкости к агрессивным средам - рений напоминает металлы платиновой группы. В компактном состоянии (в виде слитков, прессованных штабиков) рений устойчив на воздухе при обычных температурах. При неизменности благоприятных условий металл может годами не тускнеть на воздухе, таким же «результатом» могут похвастать лишь некоторые благородные металлы: золото и платина. При температурах выше 300° C начинает наблюдаться окисление металла с образованием оксидов (ReO3, Re2O7), интенсивно этот процесс протекает при температурах выше 600 °C, а в атмосфере кислорода при нагревании свыше 400 °С металл сгорает. Появление при этом белого дыма свидетельствует об образовании семиокиси рения Re2O7, которая очень летуча. Порошкообразный рений окисляется во влажном воздухе до рениевой кислоты HReO4:

4Re + 7O2 + 2H2O → 4HReO4

Рений более устойчив к окислению, чем вольфрам и молибден, ведь он не реагирует непосредственно с азотом и водородом; порошок рения лишь адсорбирует водород. Семьдесят пятый элемент не растворяется в соляной и плавиковой кислотах любых концентраций на холоде и при нагревании до 100° С и выше. В азотной кислоте, горячей концентрированной серной кислоте, в пероксиде водорода металл растворяется во всех случаях с образованием рениевой кислоты:

3Re + 7HNO3 → 3HReO4 + 7NO + 2H2O

2Re + 7H2SO4 → 2HReO4 + 7SO2 + 6H2O

2Re + 7H2O2 → 2HReO4 + 6H2O

В растворах щелочей при нагревании рений медленно корродирует, расплавленные щелочи растворяют его быстро (особенно в присутствии окислителей - Na2O2, KNO2 и даже O2), давая метаперренаты (VII) MReO4.

Рений энергично взаимодействует с галогенами, причем сила взаимодействия уменьшается от фтора к брому. При этом не образуется соединений рения высшей валентности. При нагревании металлический рений взаимодействует с фтором, хлором, серой, селеном, бромом:

Re + 3F2 → ReF6

2Re + 5Cl2 → 2ReCl5

Re + 2S → ReS2

С фтором при нагревании образуется смесь ReF5, ReF6 и ReF7, с хлором - ReCl5 и ReCl4, с бромом - ReBr5, с йодом рений не реагирует. Кроме того, даже при повышенной температуре компактный рений не реагирует с оксидом углерода (II), метаном и углеродом (взаимодействие порошков рения и графита происходит при 1 000 °С и давлении 920 кПа, в итоге получается карбид ReC). С фосфором выше 750-800 °С рений образует фосфиды ReP3, ReP2, ReP и Re2P, с мышьяком - арсенид ReAs2,1-2,3, с кремнием при спекании - силициды ReSi, Re3Si, Re2Si, а также ReSi2 (полупроводник). Пары серы при 700-800 °С дают с рением сульфид ReS2. Аналогично сульфидам получают селениды Re2Se7 и ReSe2.

Для рения известны все валентные состояния от +7 до -1, что обусловливает многочисленность и разнообразие его соединений. Известно относительно небольшое число соединений одно, двух, трех, пяти и шестивалентного рения, все они малоустойчивы. Наиболее устойчивы соединения четырех- и семивалентного рения. К наиболее важным из них стоит отнести диоксид рения, ReO2, нелетучий коричнево-черный кристаллический порошок с металлическим типом проводимости, устойчивый на воздухе при комнатной температуре. ReO2 является промежуточным продуктом при получении рения. Триоксид рения, ReO3, кристаллы темно-красного цвета с металлическим блеском. Оксид рения Re2O7, или рениевый ангидрид, светло-желтые, буроватые кристаллы. Хорошо растворяется в воде, спирте, ацетоне. При растворении в воде дает бесцветный раствор рениевой кислоты. HReO4 - сильная кислота, в свободном виде не выделена.

В конце 20-х годов нашего века крупная зарубежная фирма обратилась к директору одного из заводов цветных металлов в Сибири с выгодным, казалось бы, предложением: продать ей за довольно солидную сумму отвалы пустой породы, скопившиеся около заводской территории.

«Неспроста, должно быть, иностранцы заинтересовались отходами производства», — подумали работники завода. О том, что фирма действовала, как говорится, не корысти ради, а лишь обуреваемая желанием улучшить финансовое положение советского предприятия, разумеется, не могло быть и речи. Значит, нужно было найти, гдв собака зарыта. И заводские химики принялись тщательно исследовать старые отвалы.

А уже вскоре все стало ясно: оказалось, что «пустая» порода содержала редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической. И немудрено, что представители зарубежной фирмы готовы были раскошелиться, лишь бы заполучить драгоценные отвалы. Но к их великому огорчению сделка по вполне понятным причинам не состоялась.

Что же представляет собой рений и чем был вызван повышенный интерес к нему? Приоритет открытия этого металла принадлежит немецким ученым супругам Иде и Вальтеру Ноддак, однако у них было немало предшественников, стремившихся ускорить торжества по поводу нового элемента.

Дело в том, что еще в 1871 году Д. И. Менделеев предсказал, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем.

Претендентов на появившиеся вакансии оказалось более чем достаточно. История химии хранит множество сообщений об открытиях новых элементов, которые после тщательной проверки приходилось «закрывать». Так было и с аналогами марганца. В роли первооткрывателей этих загадочных незнакомцев непрочь были выступить многие химики разных стран, но «открытым» ими элементам (ильмению, дэвию, люцию, ниппонию) суждено было лишь попасть в историю науки, но не заполнить вакансии периодической таблицы.

Правда, один из них — дэвий, открытый в 1877 году русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви, давал реакцию, которую в наше время используют в аналитической химии для определения рения. Может быть, Керну и в самом деле довелось держать в руках крупицы темно-серебристого металла, того, что спустя полвека официально появился на свет под названием рений? Но как бы то ни было в клетках № 43 и 75 продолжали торчать унылые вопросительные знаки.

Период неизвестности длился до тех пор, пока в поиски неуловимых элементов не включились немецкие химики Вальтер Ноддак и Ида Такке, которые вскоре, видимо, решили, что работа пойдет успешнее, если они скрепят свой научный союз еще и брачными узами.

Первым объектом их исследований, начатых в 1922 году, стала платиновая руда, однако экспериментировать с ней было довольно накладно, и ученым пришлось переключиться на материалы «попроще». К тому же теоретические работы, которые параллельно с экспериментами вели супруги, убеждали их в том, что, вероятнее всего, искомые элементы № 43 и 75 прячутся в природе в минералах типа колумбитов.

Кроме того, теория позволила ученым рассчитать и приблизительное содержание в земной коре этих не поддающихся открытию элементов: оказалось, что на каждый их атом приходятся миллиарды атомов других представителей химического мира. Стоило ли при этом удивляться, что так долго пустовали «квартиры» № 43 и 75, а их будущие обитатели тем временем водили за нос не одно поколение химиков?

1 Эксперименты супругов Ноддак поражали своим размахом: в течение года они, пользуясь разработанным незадолго до этого рентгеноспектральным методом, «прощупали» 1600 земных минералов и 60 пришельцев из космоса — метеоритов. Титанический труд увенчался успехом: в 1925 году ученые объявили о том, что нашли в колумбите два новых элемента- мазурий (№ 43) и рений (№ 75).

Но объявить об открытии — еще не все. Нужно суметь доказать свою правоту тем, кто поставит под сомнение рождение новых элементов. Одним из таких ученых, усомнившихся в том, что пришла, наконец, пора на место знаков вопроса поставить в таблицу Д. И. Менделеева символы Ма и Re, был известный немецкий химик Вильгельм Прандтль. Крупный теоретик и блестящий экспериментатор, он вступил в ожесточенную дискуссию с супругами Ноддак.

Те, в свою очередь, готовы были любой ценой защищать свой престиж. В конце концов «схватка», за ходом которой с интересом следил научный мир, закончилась вничью: убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений к этому моменту существовал уже не только на рентгеноспектрограммах: в 1926 году было выделено 2 миллиграмма нового металла, а спустя год — 120 миллиграммов!

Да и работы других ученых — англичанина Ф. Лоринга, чехов И. Друце, Я. Гейровского и В. Долейжека (они независимо от супругов Ноддак, но лишь на несколько месяцев позже обнаружили элемент № 75 в марганцевых рудах) -свидетельствовали о том, что нашелся истинный владелец соответствующего «апартамента» периодической таблицы.

Рений оказался практически «последним из могикан» — элементов, обнаруженных в природных материалах.

В дальнейшем удалось заполнить еще несколько остававшихся пустыми клеток периодической системы элементов Д. И. Менделеева, но их обитатели были уже получены искусственным путем — с помощью ядерных реакций. Первым среди них суждено было стать бывшему мазурию — элементу № 43, который открывшие его в 1937 году итальянские ученые Э. Сегре и К. Перье назвали технецием (что по-гречески означает «искусственный»).

Но вернемся к рению. Своим именем металл обязан реке Рейн. Рейнская область — родина Иды Ноддак; здесь же и сам рений впервые увидел свет. (Заметим, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести.) Промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с большим содержанием рения — 100 граммов на тонну.

Всего одна щепотка на гору руды, но для рения и такую концентрацию можно считать необычайно высокой: ведь его среднее содержание в земной коре в десятки тысяч раз ниже. Немного найдется элементов, которые встречаются в природе еще реже, чем рений.

Распространенность химических элементов часто для наглядности изображают в виде пирамиды. Ее широкое основание составляют кислород, кремний, алюминий, железо, кальций, которыми богата Земля, а рений располагается в «поднебесье» — на самом острие вершины.

Как полагал академик А. Е. Ферсман, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Возможно, со временем геологи сумеют проникнуть в самые недра нашей планеты и газеты всего мира опубликуют сенсационное сообщение об открытии там богатейшего рениевого месторождения…

В 1930 году мировое производство рения составляло всего… 3 грамма (зато каждый из этих граммов стоил ни мало, ни много — 40 тысяч марок!). Но уже спустя 10 лет только в одной Германии было получено примерно 200 килограммов этого металла.

С тех пор интерес к рению растет как на дрожжах. Он оказался одним из самых тяжелых металлов — чуть ли не в три раза тяжелее железа. Только осмий, иридий и платина по плотности немного превосходят рений. Характерная его черта — необычайная тугоплавкость: по температуре плавления (3180°С) он уступает лишь вольфраму. А температура его кипения настолько высока, что до сих пор ее не удалось определить с большой степенью точности. Можно лишь сказать, что она близка к 6000°С (только вольфрам кипит примерно при такой же температуре).

Еще одно важное свойство этого металла — высокое электросопротивление. Не менее любопытны и химические свойства рения. Ни один другой элемент периодической системы не может похвастать тем, что, подобно рению, имеет восемь различных окислов. Кроме этого «октета» окислов, где валентность рения меняется от 8 до 1, он — единственный среди всех металлов- способен образовать ионы (так называемые «ренид-ионы»), в которых металл отрицательно одновалентен.

Рений весьма устойчив на воздухе: при комнатной температуре его поверхность остается блестящей десятки лет. В этом с ним могут конкурировать, пожалуй, лишь золото, платина и другие представители «благородного семейства». Если оценить все металлы с точки зрения их коррозионной стойкости, то в этой «табели о рангах» рению по праву должно быть предоставлено одно из самых почетных мест. Ведь самые «злые» кислоты — плавиковая, соляная, серная — не в силах с ним справиться, хотя перед азотной кислотой он пасует.

Как видите, свойства рения достаточно разнообразны. Многогранна и его деятельность в современной технике. Пожалуй, наиболее важную роль рений играет в создании различных кислотоупорных и жаропрочных сплавов. Техника XX века предъявляет к конструкционным материалам все более и более жесткие требования.

Возможно, старику Хоттабычу для получения сплава с любыми заданными свойствами понадобилось бы лишь вырвать два-три волоска из своей бороды. Ученым обладающим даром волшебства, приходится тратить на это долгие годы, да и «расход» волос при этом порой бывает значительно выше.

Можно с полным основанием сказать, что с тех пор, как создатели сплавов взяли на вооружение, рений, им удалось добиться немалых успехов. Во всяком случае жаропрочные сплавы этого металла с вольфрамом и танталом уже успели завоевать признание конструкторов. Еще бы: мало какому материалу по плечу сохранять при «адских» температурах — до 3000°С! — ценные механические свойства, а для рениевых сплавов — это не проблема.

Особый интерес металловедов вызывает «рениевый эффект»- благотворное влияние рения на свойства вольфрама и молибдена. Дело в том, что эти тугоплавкие металлы, которые не только не боятся высоких температур, но и стойко переносят при этом значительные нагрузки, в обычных условиях (не говоря даже о легком морозе) ведут себя весьма капризно: они хрупки и от удара могут разлететься на кусочки, как стекло. Но оказалось, что в сочетании с рением вольфрам и молибден образуют прочные сплавы, сохраняющие пластичность даже при низких температурах.

Природа «рениевого эффекта» еще недостаточно изучена. Как полагают ученые, суть его в следующем. В процессе производства в вольфрам и молибден иногда проникает «инфекция» — углерод. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким.

У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден. Теперь уже для хрупкости у металла нет оснований и он становится вполне пластичным. Вот почему из сплавов вольфрама и молибдена с рением можно изготовить фольгу или проволоку в несколько раз тоньше человеческого волоса.

Для сверхточных навигационных приборов, которыми пользуются космонавты, летчики, моряки, необходимы так называемые торсионы — тончайшие (диаметром всего несколько десятков микрон!), но удивительно прочные металлические нити. Лучшим материалом для них считается молибденорени-евый сплав (50% рения). Оценить его прочность можно по такому факту: проволочка из него сечением в 1 квадратный миллиметр способна выдержать нагрузку в несколько сот килограммов!

Сегодня трудно найти на земле уголок, куда бы не проникло еще электричество. В промышленности и сельском хо-20 зяйстве, на транспорте и в быту постоянно трудится несчетное число электроприборов. Множество приборов — это множество выключателей, множество контактов. При работе выключателя в нем иногда проскакивает крохотная искорка, которую не следует считать безобидной: медленно, но верно она разрушает электрический контакт, а это приводит к непредусмотренной потере электроэнергии.

Какой бы мизерной ни была это потеря, но помноженная на миллиарды контактов, она становится огромной. Особенно важно обеспечить стойкость контактов в тех случаях, когда они работают в условиях повышенной температуры или влажности, где вероятность их разрушения возрастает. Вот почему ученые постоянно ищут все более стойкие — прочные и тугоплавкие — материалы для изготовления контактов.

Долгое время для этой цели не без успеха применяли вольфрам. Когда же стали известны характеристики рения, выяснилось, что рениевые контакты лучше вольфрамовых. Так, например, вольфрамовые контакты выдерживали совместное «наступление» тропической коррозии и вибрации лишь несколько суток, а затем полностью выходили из строя; рениевые же контакты успешно работают в таких условиях месяцы и даже годы.

Но где же напастись столько рения, чтобы удовлетворить им электротехническую промышленность? Опыты показали, что вовсе не обязательно делать контакт из чистого рения. Достаточно добавить к вольфраму немного этого металла, и эффект будет почти тот же. Зато расходы рения сократятся во много раз: одного килограмма его хватает на десятки тысяч контактов.

Один из вольфраморениевых сплавов, выпускаемый нашей промышленностью, уже нашел применение более чем в 50 электровакуумных приборах. Использование этого материала в катодном узле электроннолучевой трубки повысило его долговечность до 16 тысяч часов. Это значит, что если экран телевизора светится в наших домах в среднем по четыре часа в день, то его катодный узел сможет безупречно работать не менее 12 лет.

Замечательные свойства продемонстрировали и другие сплавы рения — с ниобием, никелем, хромом, палладием. Даже небольшие добавки рения повышают, например, температуру плавления хромоникелевого сплава примерно на 200-250 градусов.

Широким диапазоном свойств рениевых сплавов объясняется и многообразие сфер их применения: от высокочувствительных термопар, не боящихся жарких объятий расплавленной стали, до кончиков вечных перьев, опор компасных стрелок и других деталей, которые должны долгое время сохранять большую твердость, прочность, износостойкость.

Число сплавов рения с другими металлами постоянно растет, причем сегодня в подборе «партнеров» для него значительную помощь металловедам оказывает электронная вычислительная техника. С помощью1 ЭВМ уже предсказаны свойства многих двойных сплавов рения.

Для борьбы с коррозией — вечным врагом металла — ученые разработали немало способов. Хромирование, никелирование, цинкование взяты на вооружение много лет назад, а вот ренирование — процесс сравнительно новый. Тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ.

Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в баллоне электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах.

На вольфрам эти непрошеные гости действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Новая, но очень важная область применения рения — катализ. Металлический рений, а также многие его сплавы и соединения (окислы, сульфиды, перренаты) оказались отличными катализаторами различных процессов — окисления аммиака и метана, превращения этилена в этан, получения альдегидов и кетонов из спиртов, крекинга нефти.

Самый многообещающий катализатор — порошкообразный рений, способный поглощать большие количества водорода и других газов. По мнению специалистов, в ближайшие годы на катализацион-ные «нужды» будет расходоваться половина рения, добываемого во всем мире.

Как вы убедились, «безработица» рению не грозит. Однако шлагбаумами на пути широкого использования его в технике оказались редкость и рассеянность этого элемента в природе. В земной коре золота, например, содержится в пять раз больше, чем рения, серебра-в сто раз, вольфрама — в тысячу, марганца — почти в миллион, а железа — в 50 миллионов раз больше. О чрезвычайной рассеянности рения говорит тот факт, что этот элемент не имеет собственных месторождений.

Практически единственный минерал, который можно назвать рениевым, -джезказганит (он найден вблизи казахского города Джезказган). Обычно же рений встречается в качестве примеси, например, в молибдените (до 1,88%), колумбите, колчедане и других минералах. Рения в них очень мало — всего от миллиграммов до нескольких граммов на тонну.

Стоит ли удивляться, что супругам Ноддак, чтобы получить первый грамм сравнительно чистого металлического рения, пришлось переработать более 600 килограммов норвежского молибденита. По подсчетам специалистов, рениевые запасы всех месторождений капиталистических стран оцениваются всего в тысячу тонн.

Еще один крупный «недостаток» рения-его высокая стоимость: он значительно дороже золота. Тем не менее спрос на этот металл все время растет, особенно в последние годы, когда им заинтересовались творцы ракетной техники.

До недавнего времени рений в нашей стране получали только из медного и молибденового сырья. В конце 70-х годов ученые Института металлургии и обогащения АН Казахской ССР создали технологию извлечения этого ценнейшего металла из полупродуктов свинцового производства. В основе новой технологии лежат ионообменные процессы, позволяющие получать очень чистый металл, обладающий высокими физико-химическими свойствами.

…В 1960 году в Институт металлургии имени А. А. Бай-кова Академии наук СССР приехали иностранные гости. Казалось бы, для работников института, имеющего мировое значение, в этом факте не было ничего примечательного — здесь привыкли к визитам зарубежных коллег любого ранга. Однако гости, о которых идет речь, — убеленная сединами супружеская пара — вызывали особое уважение: это были приехавшие в Москву супруги Ноддак.

Долго ходили они по комнатам лаборатории редких и тугоплавких металлов и сплавов. Их интерес был понятен: ученые лаборатории под руководством члена-корреспондента Академии наук СССР Е. М. Савицкого уже несколько лет занимались исследованием рения и сумели получить весьма важные результаты. Замечательному металлу предстояло в стенах института раскрыть новые грани своего дарования, обрести новые профессии, и, конечно же, супругов Ноддак не могла не волновать дальнейшая судьба их детища.

Атомный номер – 75, Re. Название берёт от Рейна – реки в Германии. Открыт металл в 1925 г. Получение первой партии рения произошло в 1928г. Последний из открытых элементов с известным стабильным изотопом.

Рений – металл с белым оттенком. Порошок рения имеет напротив чёрный окрас. Это очень твёрдый и плотный по структуре металл. Плавление — 3186º С, кипение — 5596º С. Имеет парамагнитные свойства.

Природный минерал рений фото ниже:

При температурном режиме свыше 300º С, металл начинает интенсивно окислятся, в зависимости от повышения температуры. Реакции рения более устойчивы к окислу, чем например, у вольфрама. Реакций с водородом и азотом почти не происходит, лишь адсорбция с водородом.

Во время нагревания начинает происходить взаимодействие с хлором, фтором и бромом. Не растворяется в кислотах, кроме азотной кислоты. При взаимодействии рения с образуется амальгама.

Взаимодействуя с пероксидом водорода (а точнее его водным раствором), образует рениевую кислоту. Единственный элемент, представляющий тугоплавкие металлы, не образующий карбидов.

Известно, что рений не задействован в биохимии. О его возможном воздействии имеется довольно малок количество фактов, но достоверна его токсичность, поэтому в любом случае он ядовит для живых существ.

Добыча и происхождение рения

Это крайне редкий металл. В природных залежах наиболее часто встречается сочетание вольфрам – рений – молибден. Примесь этого элемента также содержится в минералах его соседей. Основная добыча рения идёт из залежей, где он извлекается попутно.

Также рений извлекается из редчайшего природного минерала, именующимся джезказганит — по названию казахского города, вблизи которого он был найден. Также рений содержится в колумбите (ниобии), колчедане, цирконе и некоторых редкоземельных минералах.

Рений рассредоточен по всему миру, в ничтожных концентрациях. Достоверно известно лишь одно серьёзное месторождение этого метала – Итуруп, маленький остров на Курилах, Россия. Открыто в 1992 г. Рений там представлен минералом рениитом ReS2, имеющим строение схожее с молибденитом.

Месторождение представляет собой небольшую площадку на вершине спящего вулкана, где активно действуют термальные источники. Это говорит, что месторождение продолжает свой рост, и по предварительным оценкам оно ежегодно выкидывает в атмосферу около 37 тонн этого металла.

Вторым более или менее пригодным для промышленной разработки источником рения, можно считать месторождение Хитура, находящееся в Финляндии. Там рений содержится в минерале таркианите.

Как получают рений? Производство этого метала происходит посредством обработки первичного сырья с довольно низким процентом металла. В основном используются обрабатываются медные и молибденовые сульфиды.

Этапы пирометаллургического процесса, применяющегося при работе с содержащими рений рудами, включают в себя процедуру плавления, конвертирования и окислительного обжига.

При огромных температурах плавления сначала получается высший оксид Re2O7, задерживающийся специальными улавливателями. Нередко часть рения остаётся в саже после обжига, из которой его можно получить с помощью водорода. Далее полученный порошок переплавляют в рения.

При плавлении из руды возгоняется большая часть рения, остаток оседает в штейне. В процессе конвертации штейна, содержащийся в нём рений выделяется посредством газа.

Концентрация рения производится с помощью серной кислоты, после чего получается рениевая кислота. Используя определённые методы очистки, рений выделяется из кислотного раствора.

Исходя из довольно низкой продуктивности данного метода – выход может составить не более 65% содержащегося в руде металла, постоянно проводятся научные изыскания на предмет выявления более продуктивных альтернативных методов производства металла.

Современные технологии уже подразумевают применение водного раствора, вместо кислотного. Это позволит улавливать гораздо больше металла при во время очистки.

Применение рения

К основным преимуществам рения, за что его так ценят во всём мире, считаются тугоплавкость, малая коррозия при воздействии различных химических веществ и т.д. В виду высоких на этот металл, его стараются использовать только в крайних и исключительных случаях.

Ещё не так давно, основной областью его применения были жаростойкие сплавы рения с различными металлами, используемые в ракетостроении и авиастроительной промышленности.

В частности, сплавы шли на производство запчастей для сверхзвуковых истребителей. Подобные сплавы включают в свой состав, по меньшей мере, 6% металла рения.

Этот аспект быстро сделал реактивные двигатели крупным источником потребления мировых запасов рения. К тому же за счёт этого он стал считаться военно-стратегическим запасом.

Специальные термопары, содержащие рений позволяют измерять огромные температуры. Рений позволяет платиновым металлам продлить их срок службы. Также из рения делаются пружины для точной аппаратуры и нити накаливания для спектрометров и манометров.

Если точнее, то там используется с рениевым покрытием. За счёт его устойчивости к химическим воздействиям, рений используется для создания защитных покрытий против кислотной и щелочной среды.

Рений нашёл применение при изготовлении специальных контактов, которые самоочищаются после кратковременного короткого замыкания. На обычных контактах остаётся окисел, который порой не пропускает ток. На рении он тоже остаётся, но вскоре улетучивается. Поэтому контакты из рения имеют очень долгий срок службы.

Но особо важным аспектом его применения стало использование рения в специальных катализаторах, с помощью которых производят определённые компоненты . Участие в процессе переработки нефтепродуктов, повысило спрос на рений в несколько раз. Мировой рынок уже не на шутку заинтересовался этим редкоземельным металлом.

Цена рения

Мировой запас этого металла составляет порядком 13 тысяч тонн по большей части в молибденовых и медных залежах. Они являются его основными источниками в металлургической промышленности.

В принципе это не удивительно, более 2/3 всего рения на планете содержится именно в них. А оставшаяся треть представляет собой вторичный материал.

По некоторым подсчётам этих запасов хватит ещё лет на триста не меньше. Причём в этом отчёте вторичное использование не учитывалось. А подобные проекты разрабатывались достаточно давно, и некоторые проекты на практике доказали свою состоятельность.

Цены на любой продукт устанавливаются основываясь на доступность товара. Как становиться ясным, рений, купить который по карману не каждому, отнюдь не доступный металл. К тому же имеется активный спрос на рений. Цена у него естественно соответствующая.

По данным на 2011 г. чтобы приобрести рений, цена за грамм составляла около 4,5 $. Значительных тенденций к понижению цен не наблюдалось. К тому цена зависит от степени очистки металла, поэтому рений может стоить как 1000 $ за целый килограмм, так и в десять раз дороже.

Доктор геолого-минералогических наук А. КРЕМЕНЕЦКИЙ

Осенью этого года ученые московского Института минералогии, геохимии и кристаллохимии редких элементов начали уникальный технологический эксперимент. Впервые в мире на вершине действующего вулкана Кудрявый на острове Итуруп они размещают опытно-промышленную установку для получения стратегически важного редкого металла рения прямо из вулканического газа. Если эксперимент удастся, вулканическое месторождение сможет обеспечить потребности российской промышленности в рении полностью.

ЗАЧЕМ РОССИИ НУЖЕН РЕНИЙ?

Кратер вулкана Кудрявый.

Над фумарольными полями вулкана Кудрявый всегда курится дымок.

Динамика потребления рения в США.

Заглянув в кратер, вы увидите раскаленную ярко-красную лаву.

Распределение запасов рения в бывших союзных республиках (1992 год).

Вдыхать вулканические газы опасно.

Итуруп расположен в южной части Курильских островов. Вулкан Кудрявый - один из вулканов на северной оконечности острова. В его вулканических газах обнаружено высокое содержание редкого металла - рения (Re).

Технологическая схема процесса концентрирования рения на фумарольных полях вулкана Кудрявый.

Редкие металлы потому и названы так, что содержание их в земной коре невелико. На сегодняшний день ученым известно около 40 различных редких элементов. Часть из них образуют собственные минералы. Другая часть - рассеянные редкие металлы. Они не формируют собственных месторождений, а присутствуют в виде примесей в других рудах: германий - в углях, висмут - в медных рудах, галлий - в бокситах и т. д.

Рений - редкий металл, который до последнего времени считался рассеянным. В природе он встречается в основном в виде примесей в молибдените. А минералы рения (к примеру, джезказганит) настолько редки, что представляют собой не промышленную, а научную ценность.

Рений - металл высоких технологий. Высокопрочные суперсплавы для космической и авиационной техники, содержащие от 4 до 10% рения, выдерживают температуры до 2000 градусов и более без потери прочности. Из них изготавливаются корпуса и лопасти турбин, сопла двигателей ракет и самолетов. Кроме того, рений используется в нефтехимической промышленности - в биметаллических катализато рах при крекинге и риформинге нефти. Он применяется в электронике и электротехнике (термопары, антикатоды, полупроводники, электронные трубки и т. д.). Особенно широко в этой отрасли промышлен ности использует рений Япония (65-75% своего потребления).

Мировая потребность в редких металлах обычно меняется скачкообразно. Интерес к ним не постоянный, а пульсирующий. Он зависит от внедрения в производство новых высокотехнологичных сплавов с различными добавками. Сегодня в такие сплавы требуется добавлять какой-либо редкий металл, а завтра, может быть, ему найдут замену, и потребность в нем отпадет практически полностью. Что касается рения, еще лет десять назад он использовался редко. За период 1925-1967 годов мировая промышлен ность израсходовала всего 4,5 тонны рения. А сегодня только потребность Соединенных Штатов составляет около 30 тонн в год. На США приходится более 50% мирового потребления рения, причем за последние пять лет спрос на этот редкий металл увеличился в 3,6 раза.

Рений - дорогой металл. Стоимость неочищенного сырья (перринат калия) составляет около 800 долларов за килограмм. Килограмм очищенного рения на мировом рынке стоит не менее 1500 долларов. Высокочистый рений стоит и того дороже - до 900 долларов за грамм. Раньше рений получали исключительно как побочный продукт производства меди и молибдена. В обоих случаях при обжиге медного или молибденового концентрата рений в виде оксида вылетает из печных труб. Летучий оксид рения пропускают на выходе из трубы через серную кислоту, а из полученного в результате химической реакции перрината калия выделяют чистый рений.

В СССР основным потребителем рения и его соединений была Россия (около 70% суммарного потребления), а производителем - Казахстан (более 70% суммарного производства). По запасам рения Казахстан занимает второе место в мире после США. В 1990 году Советский Союз использовал порядка 10 тонн рения, из которых 70% - в авиации, 5% - в нефтехимии, 5% - в электронике и 20% - в других отраслях. После развала союзного государства потребление рения резко снизилось и составило всего лишь около 1,5 тонны в год (1994 год). Сейчас оно немного возросло - до 2-2,5 тонны в год, но в России рения производит ся всего лишь сотни килограммов... А российской промышленности требуется не менее 5 тонн рения в год.

В Советском Союзе было три значительных месторождения, где получали рений: медистые песчаники Джезказганского месторождения в Казахстане и медно-молибденовые месторождения в Узбекистане и Армении. Его также добывали в дружественной нам Монголии, на крупнейшем в мире медно-молибденовом месторождении Эрдэнет. Волею судеб все оказались теперь в ближнем зарубежье. В России остались три мелких месторождения в Читинской области и на Кавказе. Они нерентабельны - их разработка затратна. Поэтому в любой развитой капиталистической стране никто из предпринимателей и не взялся бы за их освоение. Да и в нашей стране с переходом к рыночной экономике эти месторождения не разрабатываются совсем. Так что сырьевая рениевая база России сейчас на нуле.

Итак, разрабатывать бедные месторождения просто невыгодно. Америка решает проблему добычи рения, инвестируя разработки богатых месторождений в странах третьего мира. Для нас этот путь пока невозможен - нет денег.

Можно договариваться с бывшими соотечественниками из Узбекистана и Казахстана и получать рений в порядке обмена на другие товары. Конечно, можно и просто купить импортное рениевое сырье. Но все же, если мы хотим сохранить нашу страну как великую державу, хотим отстоять свою экономическую независимость, стратегические виды сырья неплохо бы было иметь у себя дома. Тогда никто не сможет диктовать нам ни политические, ни экономические условия. А рений на сегодняшний день металл, имеющий стратегическое значение. И получать рений нам надо бы у нас в стране и желательно без привлечения иностранного капитала. МЕСТОРОЖДЕНИЕ В КРАТЕРЕ

К началу 90-х годов сырьевые ресурсы рения в России были практически исчерпаны. А по данным опроса российских потребителей, к 2005 году можно ожидать увеличение потребности России в рении до 10 тонн в год. Положение сложилось практически безвыходное, но нашей стране удивительно повезло. Именно в 1992 году удача улыбнулась геологам - они нашли рений на территории России и не в виде примесей в других минералах, а уникальное единственное известное в мире скопление минерала рения!

Рений в виде минерала обнаружен нашими учеными почти случайно. На Сахалине в городе Южно-Сахалинске есть Институт вулканологии и геодинамики Российской академии естественных наук. Директор его - Генрих Семенович Штейнберг уже много лет организует научные геологические экспедиции с участием ученых из Новосибирска, Москвы, Иркутска и других городов. И вот во время такой экспедиции в 1992 году сотрудники Института экспериментальной минералогии (он находится в городе Черноголовка, под Москвой) и Института геологии рудных месторождений (Москва) вели режимное наблюдение на вулканах Южнокурильской гряды и на вершине вулкана Кудрявый на острове Итуруп в местах выхода вулканического газа нашли новый минерал - рениит. Внешне он напоминал обычный молибденит, а оказался сульфидом рения. Содержание рения в нем достигает 80%. Это было почти чудо - заявка на возможность промышлен ного использования рениита для получения рения.

Вулкан Кудрявый высотой 986 метров - вулкан так называемого гавайского типа. В отличие от взрывающихся газовых вулканов он тихо тлеет. И в темную ночь, заглянув в кратер, вы можете увидеть в глубине раскаленную ярко-красную лаву. Иногда лава прорывается на поверхность и растекается по склонам. Правда, Кудрявый последние сто лет ведет себя спокойно - видимо, хорошо продувается газами, поэтому лава не выплескивается наружу. Поверхность кратера вулкана Кудрявый имеет размеры 200х400 метров. На кратере Кудрявого находятся шесть фумарольных полей - площадок размером 30х40 метров с большим количеством мест выхода газа. Над ними всегда курится желтоватый дымок.

Ученые задумались, откуда мог взяться сульфид рения на вершине вулкана, и пришли к выводу, что он кристаллизуется в виде иголочек прямо из вулканического газа. Из шести имеющихся фумарольных полей четыре - высокотемпературные. Вулканические газы в них имеют температуру от 500 до 940 градусов по Цельсию. И только на таких "горячих" полях и образуется новый минерал рения. Там, где холоднее, рениита намного меньше, а при температуре ниже 200 градусов он практически отсутствует. В этом и заключается уникальность вулкана Кудрявый: ведь вулканические газы, выходящие на поверхность на фумарольных полях других вулканов, гораздо менее горячие.

Исключение составляет единственный вулкан Килауэа, который находится на Гаваях. Его газы тоже имеют высокую температуру, но, правда, содержание рения в них в два раза ниже, чем в газовых выбросах вулкана Кудрявый. Да и уловить газы на Килауэа практически невозможно - гавайский вулкан постоянно извергает потоки раскаленной лавы. Так что Россия обладает уникальным вулканом, и не воспользоваться этим обстоятельством просто грешно.

Штейнберг и его сотрудники подсчитали, сколько сульфида рения накопилось на вулкане за сто лет "работы" в стационарном режиме. Оказалось, что не так уж и много - 10-15 тонн. Этого России хватило бы на год-полтора.

Пять лет назад наш институт тоже подключился к исследованиям, проводимым на вулкане Кудрявый. Поскольку в самом минерале, образовавшемся на поверхности кратера, рения для его промышленной добычи оказалось недостаточно, мы решили проверить содержание этого металла в вулканических газах. С помощью специально сконструированных приборов было установлено, что рения там содержится около одного грамма на тонну. А только лишь за одни сутки вулкан выбрасывает в атмосферу около 50 тысяч тонн газов. Это - 20 тонн рения ежегодно. А за сто лет "в трубу" вылетело более 2000 тонн рения, который рассеялся по планете.

Ученые также обнаружили, что в вулканических газах содержится не только рений, а еще по меньшей мере десяток редких сопутствующих элементов: германий, висмут, индий, молибден, золото, серебро и другие металлы. РЕНИЙ МОЖНО ДОБЫВАТЬ ПРЯМО ИЗ ВУЛКАНИЧЕСКОГО ГАЗА

Итак, за последние сто лет Кудрявый выбросил с высокотемпературными вулканическими газами в земную атмосферу сотни тонн рения. Его кратер - своего рода печная труба завода по переработке молибденита. Но на таких заводах рений и другие рассеянные редкие металлы "в трубу" не вылетают, их улавливают специальными фильтрующими устройствами, концентрируют и получают компоненты высокотехнологичных сплавов.

Поэтому сотрудникам нашего института пришла в голову вполне здравая идея о постройке установки для улавливания рения и других редких металлов прямо на вулкане - на этой трубе природного происхождения. Мысль сама по себе достаточно крамольная хотя бы потому, что до сих пор на вулканах добывали только серу. Например, на самом острове Итуруп до 1942 года японцы разрабатывали вулканические серные месторождения. Сохранились остатки железных дорог, канатная дорога. Сейчас пришла пора и россиянам воспользоваться богатством недр этой земли.

Мы разработали и в 1999 году запатентовали технологию извлечения рения, попытавшись сымитировать природный процесс осаждения сульфида рения в местах выхода высокотемпературных вулканических газов. На пути газа мы решили поставить улавливатели, на которых сульфид рения осаждался бы в виде тоненьких иголочек, как на вулканическом кратере.

В качестве носителей, адсорбирующих на себя сульфид рения, мы использовали природные цеолиты. Эти алюмосиликаты имеют одну особенность - они очень пористые. Их внутренняя адсорбирующая поверхность - около 2 квадратных метров на 1 грамм цеолита. Крупное месторождение цеолитов есть на Сахалине (Лютогорское месторождение), с которого мы и собираемся доставлять цеолиты на вулкан Кудрявый.

Технология оказалась простой - гораздо проще, чем для традиционного способа извлечения рения из молибденовой руды. Кроме того, было подсчитано, что такой способ намного дешевле рудного.

Министерство природных ресурсов РФ, понимая стратегическую значимость рения, все годы финансировало наши пионерские работы на вулкане Кудрявый. Когда исследовательские работы были в целом завершены, министерство выделило специальные ассигнования нашему институту на проектирование и создание пилотной установки для проведения промышленных испытаний на вулкане.

И вот в 2000 году мы собрали деревянную пирамиду с площадью основания около 9 квадратных метров. Этот деревянный купол должен покрыть одно из небольших фумарольных полей. Из вершины пирамиды в сторону будет отведена десятиметровая труба. Газ из вулкана выходит под очень низким давлением, явно недостаточным для прокачивания через улавливатели. Для создания "напора" вулканического газа в конце трубы планируется поставить вентилятор-дымосос. Дальше газ пройдет через емкость со 100 килограммами цеолита. Цеолит будет промываться серной кислотой, которую тоже можно получать прямо на месте из чистой вулканической серы. Этот сернокислый раствор, содержащий рений, затем нужно будет прогнать через ионообменную смолу. За месяц мы надеемся получить килограмм калиевой соли рениевой кислоты, а из нее можно выделить 500-700 граммов чистого рения. Опытно-промышленная установка предусматривает сезонную работу с годовым объемом добычи рения около 280 килограммов.

Если все у нас получится, то недропользователи не заставят себя ждать. Проектом заинтересо вался ряд институтов авиационной промышленности, правительство Москвы.

Конечно, в промышленных условиях купол будет гораздо больше. И не деревянный, а бетонный. На это нужны средства и немалые. Ведь в основном все необходимое оборудование и сырье придется доставлять вертолетами. Но все же за два года наладить производство - вполне реально. И за два года работы промышленная установка себя окупит за счет высокой стоимости конечного продукта. А потом можно рассчитывать и на прибыль. Неплохо было бы выйти с дешевым рениевым сырьем и на мировой рынок. Но все это - дело будущего.

Вулкан Кудрявый разрушил научный стереотип - опроверг общепринятую точку зрения, что рений встречается в природе только в рассеянном виде. Вулканическое месторождение создало прецедент для геологов всего мира - стало ясно: такое возможно. И вполне может оказаться, что вулкан на Итурупе не одинок. На земном шаре есть неизученные вулканы и не исключено - рений где-нибудь удастся найти. Главное - ученым теперь понятно: такие месторождения существуют. И ясен принцип поиска - нужно искать высокотемпературные вулканические газы.

Для большинства наших ученых уже нет сомнений, что извлечение рения на вулкане Кудрявый целесообразно. Ресурсы рения на нем достаточны для обеспечения внутрироссийской потребности, они превышают оборот этого элемента на всех действующих предприятиях России. Помимо рения из газовых выбросов можно извлечь висмут, индий, германий, серебро, золото, а также селен. Остается засучить рукава. Лишь бы только уникальное вулканическое месторождение на острове Итуруп не оказалось тоже в зарубежье, но не в ближнем, а в дальнем. Доктор геолого-минералогических наук А. КРЕМЕНЕЦКИЙ, заместитель директора Института минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ) Министерства природных ресурсов и РАН.
Записала О. БЕЛОКОНЕВА.